首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Activation of protein kinase B (PKB) by growth factors and hormones has been demonstrated to proceed via phosphatidylinositol 3-kinase (PI3-kinase). In this report, we show that PKB can also be activated by PKA (cyclic AMP [cAMP]-dependent protein kinase) through a PI3-kinase-independent pathway. Although this activation required phosphorylation of PKB, PKB is not likely to be a physiological substrate of PKA since a mutation in the sole PKA consensus phosphorylation site of PKB did not abolish PKA-induced activation of PKB. In addition, mechanistically, this activation was different from that of growth factors since it did not require phosphorylation of the S473 residue, which is essential for full PKB activation induced by insulin. These data were supported by the fact that mutation of residue S473 of PKB to alanine did not prevent it from being activated by forskolin. Moreover, phosphopeptide maps of overexpressed PKB from COS cells showed differences between insulin- and forskolin-stimulated cells that pointed to distinct activation mechanisms of PKB depending on whether insulin or cAMP was used. We looked at events downstream of PKB and found that PKA activation of PKB led to the phosphorylation and inhibition of glycogen synthase kinase-3 (GSK-3) activity, a known in vivo substrate of PKB. Overexpression of a dominant negative PKB led to the loss of inhibition of GSK-3 in both insulin- and forskolin-treated cells, demonstrating that PKB was responsible for this inhibition in both cases. Finally, we show by confocal microscopy that forskolin, similar to insulin, was able to induce translocation of PKB to the plasma membrane. This process was inhibited by high concentrations of wortmannin (300 nM), suggesting that forskolin-induced PKB movement may require phospholipids, which are probably not generated by class I or class III PI3-kinase. However, high concentrations of wortmannin did not abolish PKB activation, which demonstrates that translocation per se is not important for PKA-induced PKB activation.  相似文献   

2.
Properties of neurofilament protein kinase.   总被引:5,自引:0,他引:5       下载免费PDF全文
Neurofilament (NF) protein kinase, partially purified from NF preparations [Toru-Delbauffe & Pierre (1983) FEBS Lett. 162, 230-234], was found to be distinct from both the casein kinase present in NFs and the cyclic AMP-dependent protein kinase which is able to phosphorylate NFs. NF-kinase phosphorylated the three NF protein components. The amount of phosphate incorporated per molecule was higher for NF 200 than for NF 145 and NF 68. Other proteins present in the NF preparations were also used as NF-kinase substrates. Two of them might correspond to the myelin basic proteins with Mr values of 18,000 and 21,000. Four other substrates in the NF preparation were not identified (respective Mr values 53,000, 55,000, 65,000 and greater than 300,000). NF kinase also phosphorylated two additional brain-cell cytoskeletal elements: GFAp and vimentin. Casein, histones and phosvitin, currently used as substrates for protein kinase assays, were very poor phosphate acceptors. Half-maximal NF-kinase activity was obtained at an NF protein concentration of about 0.25 mg/ml in heated, salt-washed, NF preparations. The specific activity was about 5 pmol of 32P incorporated/min per microgram of NF kinase preparation protein. ATP was a phospho-group donor (Km 8 X 10(-5) M), but GTP was not. NF-kinase activity remained stable at 65 degrees C for more than 1 h. The enzyme was not degraded by storage at -20 degrees C for several months in a buffer containing 50% (w/v) sucrose. Maximal activity was obtained with 5 mM-Mg2+ (Mg2+ could be replaced by Co2+); Zn2+ and Cu2+ inhibited the reaction. NF-kinase was not dependent on cyclic AMP, cyclic GMP, Ca2+ or Ca2+ plus dioleoylglycerol and phosphatidylserine.  相似文献   

3.
The aim of this study was to determine the pathway(s) by which ethanol activates mitogen-activated protein kinase (MAPK) signaling and to determine the role of Ca2+ in the signaling process. MAPK signaling was determined by assessing MAPK activity, measuring phosphorylated extracellular signaling-regulated kinase (pp 44 ERK-1 and pp 42 ERK-2) expression and ERK activity by measuring ERK-2-dependent phosphorylation of a synthetic peptide as a MAPK substrate in rat vascular smooth muscle cells. Ethanol activated extracellular signal-regulated kinase expression (ERK 1 and 2) could be observed when vascular smooth muscle cells (VSMCs) were stimulated for 5 min or less, but was inhibited when cells are treated for 10 min or more with 1-16 mM of ethanol. Maximum ethanol-induced MAPK activity was observed within 5 min with 4 or 8 mM. Ethanol stimulated MAPK activity was blocked by the protein kinase C (PKC) inhibitor (GF109203X) and epidermal growth factor (EGF) receptor antagonist (PD153035) by 41 +/- 24 and 34 +/- 12.3%, respectively. The calcium channel blocker, diltiazem and the chelating agent, BAPTA, reduced the activation of MAPK activity by ethanol, significantly. The data demonstrate that ethanol-stimulated MAPK expression is mediated partially through both the EGF-receptor and PKC intermediates and that activation through the PKC intermediate is calcium-dependent.  相似文献   

4.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

5.
Inhibition of v-Mos kinase activity by protein kinase A.   总被引:2,自引:1,他引:1       下载免费PDF全文
We investigated the effect of cyclic AMP-dependent protein kinase (PKA ) on v-Mos kinase activity. Increase in PKA activity in vivo brought about either by forskolin treatment or by overexpression of PKA catalytic subunit resulted in a significant inhibition of v-Mos kinase activity. The purified PKA catalytic subunit was able to phosphorylate recombinant p37v-mos in vitro, suggesting that the mechanism of in vivo inhibition of v-Mos kinase involves direct phosphorylation by PKA. Combined tryptic phosphopeptide two-dimensional mapping analysis and in vitro mutagenesis studies indicated that Ser-56 is the major in vivo phosphorylation site on v-Mos. In vivo phosphorylation at Ser-56 correlated with slower migration of the v-Mos protein during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. However, even though Ser-56 was phosphorylated by PKA, this phosphorylation was not involved in the inhibition of v-Mos kinase. The alanine-for-serine substitution at residue 56 did not affect the ability of v-Mos to autophosphorylate in vitro or, more importantly, to activate MEK1 in transformed NIH 3T3 cells. We identified Ser-263 phosphorylation, the Ala-263 mutant of v-Mos was not inhibited by forskolin treatment. From our results, we propose that the known inhibitory role of PKA in the initiation of oocyte maturation in mice could be explained at least in part by its inhibition of Mos kinase.  相似文献   

6.
7.
The protein kinase C family.   总被引:22,自引:0,他引:22  
Protein kinase C represents a structurally homologous group of proteins similar in size, structure and mechanism of activation. They can modulate the biological function of proteins in a rapid and reversible manner. Protein kinase C participates in one of the major signal transduction systems triggered by the external stimulation of cells by various ligands including hormones, neurotransmitters and growth factors. Hydrolysis of membrane inositol phospholipids by phospholipase C or of phosphatidylcholine, generates sn-1,2-diacylglycerol, considered the physiological activator of this kinase. Other agents, such as arachidonic acid, participate in the activation of some of these proteins. Activation of protein kinase C by phorbol esters and related compounds is not physiological and may be responsible, at least in part, for their tumor-promoting activity. The cellular localization of the different calcium-activated protein kinases, their substrate and activator specificity are dissimilar and thus their role in signal transduction is unlike. A better understanding of the exact cellular function of the different protein kinase C isoenzymes requires the identification and characterization of their physiological substrates.  相似文献   

8.
Genistein inhibits protein histidine kinase.   总被引:9,自引:0,他引:9  
Protein histidine kinase was prepared from whole cell extracts of the yeast, Saccharomyces cerevisiae. The enzyme was assayed using either histone H4 or a synthetic peptide corresponding to residues 70 to 102 of histone H4 as an in vitro substrate. With either substrate, both genistein and its solvent, dimethyl sulfoxide (Me2SO), inhibited protein histidine kinase. Me2SO alone gave a cooperative dose-response curve, with inhibition changing from almost zero below 10% Me2SO to 80% at 20% Me2SO with either substrate. Genistein gave a simple dose-response curve with 50% inhibition of protein histidine kinase at 110 microM genistein. In experiments with protein histidine kinase, genistein was a noncompetitive inhibitor with respect to ATP, histone H4 or the synthetic peptide, although, in the case of the synthetic peptide, the data were also consistent with competitive inhibition. These data gave Km values for both ATP and histone H4 of 15 microM, in satisfactory agreement with previously reported values (Huang, J., Wei, Y., Kim, Y., Osterberg, L., and Matthews, H. R. (1991) J. Biol. Chem. 266, 9023-9031). The Km for the synthetic peptide was 80 microM. The KI values were 270 or 310 microM measured with histone H4 or the synthetic peptide as substrate, respectively. While these KI values are relatively high, relative to published KI values for genistein inhibition of protein tyrosine kinases, many reported experiments use genistein at concentrations where inhibition of protein histidine kinase occurs. It is possible that some of the observed effects of genistein in vivo may be due to inhibition of protein histidine kinase.  相似文献   

9.
The mitogen-activated protein kinase activator.   总被引:6,自引:0,他引:6  
The mitogen-activated protein kinase appears to be regulated by another growth factor regulated kinase, the mitogen-activated protein kinase activator. In the past year, much progress has been made in purifying and characterizing the mitogen-activated protein kinase activator, in determining its primary structure, and in identifying another protein kinase that may function upstream to regulate its activity.  相似文献   

10.
Starting from the finding that, for neuronal cells, the nuclear-membrane-associated protein kinase C (PKC) is the so-called 'membrane inserted', constitutively active form, we attempted to identify substrates of this nuclear PKC. For this purpose, nuclear membranes and other subcellular fractions were prepared from bovine brain, and in-vitro phosphorylation was performed. Several nuclear membrane proteins were found, the phosphorylation of which was inhibited by specific PKC inhibitors and effectively catalyzed by added PKC. Combining the methods of two-dimensional gel electrophoresis, in-situ digestion, reverse-phase HPLC and microsequencing, two of these nuclear PKC substrates were identified; the known PKC substrate Lamin B2, which serves as a control of the approach and the nucleolar protein B23. Our data suggest, that, for B23, Ser225 is a site of phosphorylation by PKC.  相似文献   

11.
We previously reported the cloning of the thousand and one-amino acid protein kinase 1 (TAO1), a rat homolog of the Saccharomyces cerevisiae protein kinase sterile 20 protein. Here we report the complete sequence and properties of a related rat protein kinase TAO2. Like TAO1, recombinant TAO2 selectively activated mitogen-activated protein/extracellular signal-regulated kinase kinases (MEKs) 3, 4, and 6 of the stress-responsive mitogen-activated protein kinase pathways in vitro and copurified with MEK3 endogenous to Sf9 cells. To examine TAO2 interactions with MEKs, the MEK binding domain of TAO2 was localized to an approximately 135-residue sequence just C-terminal to the TAO2 catalytic domain. In vitro this MEK binding domain associated with MEKs 3 and 6 but not MEKs 1, 2, or 4. Using chimeric MEK proteins, we found that the MEK N terminus was sufficient for binding to TAO2. Catalytic activity of full-length TAO2 enhanced its binding to MEKs. However, neither the autophosphorylation of the MEK binding domain of TAO2 nor the activity of MEK itself was required for MEK binding. These results suggest that TAO proteins lie in stress-sensitive kinase cascades and define a mechanism by which these kinases may organize downstream targets.  相似文献   

12.
A novel protein kinase, which was only active when phosphorylated by the mitogen-activated protein kinase (MAP kinase), has been purified 85,000-fold to homogeneity from rabbit skeletal muscle. This MAP kinase activated protein kinase, termed MAPKAP kinase-2, was distinguished from S6 kinase-II (MAPKAP kinase-1) by its response to inhibitors, lack of phosphorylation of S6 peptides and amino acid sequence. MAPKAP kinase-2 phosphorylated glycogen synthase at Ser7 and the equivalent serine (*) in the peptide KKPLNRTLS*VASLPGLamide whose sequence is similar to the N terminus of glycogen synthase. MAPKAP kinase-2 was resolved into two monomeric species of apparent molecular mass 60 and 53 kDa that had similar specific activities and substrate specificities. Peptide sequences of the 60 and 53 kDa species were identical, indicating that they are either closely related isoforms or derived from the same gene. MAP kinase activated the 60 and 53 kDa forms of MAPKAP kinase-2 by phosphorylating the first threonine residue in the sequence VPQTPLHTSR. Furthermore, Mono Q chromatography of extracts from rat phaeochromocytoma and skeletal muscle demonstrated that two MAP kinase isoforms (p42mapk and p44mapk) were the only enzymes in these cells that were capable of reactivating MAPKAP kinase-2. These results indicate that MAP kinase activates at least two distinct protein kinases, suggesting that it represents a point at which the growth factor-stimulated protein kinase cascade bifurcates.  相似文献   

13.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

14.
Protein kinase C (PKC) exhibits both negative and positive cross-talk with multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) in PC12 cells. PKC effects negative cross-talk by inhibiting the mobilization of intracellular Ca2+ stores and by inhibiting Ca2+ influx through voltage-sensitive Ca2+ channels. In the absence of cross-talk, Ca2+ influx induced by depolarization with 56 mM K+ stimulates CaM kinase and its autophosphorylation and converts up to 50% of the enzyme to a Ca(2+)-independent or autonomous species. Acute treatment with phorbol myristate acetate (PMA) elicits a parallel reduction in depolarization-induced Ca2+ influx and in generation of autonomous CaM kinase. Negative cross-talk also occurs during stimulation of the phosphatidylinositol signaling system with bradykinin, which activates both PKC and CaM kinase. The extent of CaM kinase activation is attenuated by the simultaneous activation of PKC; it is enhanced by prior down-regulation of PKC. PKC also exhibits positive cross-talk with CaM kinase. Submaximal activation of CaM kinase by ionomycin is potentiated by concurrent activation of PKC with PMA. Such PMA treatment is found to increase the level of cytosolic calmodulin. Enhanced activation of CaM kinase by PKC may result from PKC-mediated phosphorylation of calmodulin-binding proteins, such as neuromodulin and MARCKS, and the subsequent increase in the availability of previously bound calmodulin for activation of CaM kinase.  相似文献   

15.
J Hochman  A Katz  U Bachrach 《Life sciences》1978,22(17):1481-1484
The effect of polyamines on the activity of cAMP-dependent protein kinase from rat liver was determined. It has been shown that polyamines inactivate the enzyme in the decreasing order of activity: spermine > spermidine > putrescine. This effect is due to inhibition of the catalytic subunit. On the other hand, binding of cAMP to the regulatory subunit of the enzyme is not affected by polyamines. It is suggested that the inhibition of protein kinase by polyamines is a general phenomenon.  相似文献   

16.
G-protein-coupled receptors (GPCRs) typically activate c-Jun N-terminal kinase (JNK) through the G protein betagamma subunit (Gbetagamma), in a manner dependent on Rho family small GTPases, in mammalian cells. Here we show that JNK activation by the prototypic Gq-coupled alpha1B-adrenergic receptor is mediated by the alpha subunit of Gq (Galphaq), not by Gbetagamma, using a transient transfection system in human embryonic kidney cells. JNK activation by the alpha1B-adrenergic receptor/Galphaq was selectively mediated by mitogen-activated protein kinase kinase 4 (MKK4), but not MKK7. Also, MKK4 activation by the alpha1B-adrenergic receptor/Galphaq required c-Src and Rho family small GTPases. Furthermore, activation of the alpha1B-adrenergic receptor stimulated JNK activity through Src family tyrosine kinases and Rho family small GTPases in hamster smooth muscle cells that natively express the alpha1B-adrenergic receptor. Together, these results suggest that the alpha1B-adrenergic receptor/Galphaq may up-regulate JNK activity through a MKK4 pathway dependent on c-Src and Rho family small GTPases in mammalian cells.  相似文献   

17.
The protein kinase C-related protein kinases (PRKs) have been shown to be under the control of the Rho GTPases and influenced by autophosphorylation. In analyzing the relationship between these inputs, it is shown that activation in vitro and in vivo involves the activation loop phosphorylation of PRK1/2 by 3-phosphoinositide-dependent protein kinase-1 (PDK1). Rho overexpression in cultured cells is shown to increase the activation loop phosphorylation of endogenous PRKs and is demonstrated to influence this process by controlling the ability of PRKs to bind to PDK1. The interaction of PRK1/2 with PDK1 is shown to be dependent upon Rho. Direct demonstration of ternary (Rho.PRK.PDK1) complex formation in situ is provided by the observation that PDK1 is recruited to RhoB-containing endosomes only if PRK is coexpressed. Furthermore, this in vivo complex is maintained after phosphoinositide 3-kinase inhibition. The control of PRKs by PDK1 thus evidences a novel strategy of substrate-directed control involving GTPases.  相似文献   

18.
Previous studies identified proline-directed protein kinase (PDPK) as a growth factor-sensitive serine/threonine protein kinase that is active in the cytosol of proliferative cells and tissues during interphase. In this communication, we report that the regulatory subunit (RII) of bovine cardiac muscle cAMP-dependent protein kinase (PKA) is a putative substrate for the multifunctional PDPK. Purified RII is readily phosphorylated by PDPK in vitro in a time-dependent, enzyme-dependent manner to a stoichiometry approaching 0.7 mol phosphate/mol RII subunit protein. The major RII phosphorylation site is identified as a threonine residue located within a large hydrophobic tryptic peptide that is predicted to contain the cAMP binding domains. In contrast to the reported effects of RII autophosphorylation, kinetic analysis of RII function following phosphorylation by PDPK indicates that the inhibitory potency of RII toward the catalytic subunit of PKA in a reassociation assay is increased in proportion to the degree of phosphorylation. Further studies indicate that the cAMP-dependent activation of the RII2C2 holoenzyme is inhibited by PDPK phosphorylation. Taken together, the results of these studies indicate that phosphorylation of RII by PDPK attenuates the activity of PKA. This antagonistic interaction suggests a biochemical mechanism by which a growth factor-activated signaling system may function to modulate cAMP-dependent cellular responses.  相似文献   

19.
The cGMP-dependent protein kinases (PKG) are emerging as important components of mainstream signal transduction pathways. Nitric oxide-induced cGMP formation by stimulation of soluble guanylate cyclase is generally accepted as being the most widespread mechanism underlying PKG activation. In the present study, PKG was found to be a target for phorbol 12-myristate 13-acetate (PMA)-responsive protein kinase C (PKC). PKG1alpha became phosphorylated in HEK-293 cells stimulated with PMA and also in vitro using purified components. PKC-dependent phosphorylation was found to activate PKG as measured by phosphorylation of vasodilator-stimulated phosphoprotein, and by in vitro kinase assays. Although there are 11 potential PKC substrate recognition sites in PKG1alpha, threonine 58 was examined due to its proximity to the pseudosubstrate domain. Antibodies generated against the phosphorylated form of this region were used to demonstrate phosphorylation in response to PMA treatment of the cells with kinetics similar to vasodilator-stimulated phosphoprotein phosphorylation. A phospho-mimetic mutation at this site (T58E) generated a partially activated PKG that was more sensitive to cGMP levels. A phospho-null mutation (T58A) revealed that this residue is important but not sufficient for PKG activation by PKC. Taken together, these findings outline a novel signal transduction pathway that links PKC stimulation with cyclic nucleotide-independent activation of PKG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号