首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twelve Spanish laboratories collected 325 yeast clinical isolates during a 30 day's period, among them 224 Candida albicans, 30 Candida glabrata, and 27 Candida parapsilosis. In vitro antifungal susceptibility to amphotericin B, ketoconazole, fluconazole and itraconazole was determined by an agar diffusion test (Neo-Sensitabs, Rosco, Denmark). All the isolates tested were susceptible in vitroto amphotericin B and nearly all (97.2%) to itraconazole. In vitrosusceptibility to fluconazole and ketoconazole was high (90.2% and 91.4% of isolates, respectively) but showed variations depending on the species tested. Resistance to fluconazole and ketoconazole was low in C. albicans (4% and 3%, respectively), but 30% of Candida guilliermondii and 36% of C. glabrata isolates were resistant to fluconazole. Ketoconazole resistance was observed in 40% of C. glabrata, and 17% of Candida tropicalis. Resistance to antifungal drugs is very low in Spain and it is related to non-C. albicans isolates.  相似文献   

2.
Oropharyngeal candidiasis caused by various species of Candida is one of the most common infections in HIV seropositive or AIDS patients. Drug resistance among these yeasts is an increasing problem. We studied the frequency of resistance profile to fluconazole, itraconazole, ketoconazole, amphotericin B and terbinafine of 137 isolates of Candida sp. From HIV positive or AIDS patients with oropharyngeal candidiasis at Instituto de Inmunología, U.C.V. and the Hospital “Jose Ignacio Baldó”, Caracas Venezuela, using the well diffusion susceptibility test (Magaldi et al.). We found that nearly 10% of C. albicans isolates were primarily fluconazole resistant, 45% of C. albicans isolates from patients with previous treatment were resistant to fluconazole, of which 93% showed cross-resistance to itraconazole, and even about 30% of C. tropicalis (n = 13) were resistant to fluconazole and/or itraconazole. To this respect, several recent reports have been described antifungal cross-resistance among azoles. Therefore, we consider that C. tropicalis should be added to the growing list of yeast in which antifungal drug resistance is common. This report could be useful for therapeutic aspect in AIDS patients with oral candidiasis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
An in vitro susceptibility testing of 181 strains of six species of Candida and 21 strains of Cryptococcus neoformans was carried out in order to investigate the resistance to new antifungal drugs. We have studied clinical isolates from 200 different patients of Hospital del Mar (Barcelona) and Hospital La Inmaculada (Almería). An agar diffusion method (NeoSensitabs, Rosco, Taastrup, Denmark), was employed with fluconazole, itraconazole, and reference drugs amphotericin B, flucytosine, tioconazole and ketoconazole. A high level of susceptibility was found for amphotericin B in C. neoformans strains while 19% of them were resistant to flucytosine. All the strains of C. neoformans and Candida guilliermondii were susceptible to the new azoles derivatives and also Candida parapsilosis and Candida albicans had a great susceptibility to this antifungals. A greater level of resistance was found for Candida krusei, Candida tropicalis and Candida glabrata to fluconazole, itraconazole and ketoconazole, but resistance to fluconazole and itraconazole is not always linked because ten resistant strains for fluconazole were susceptible to itraconazole, and two other resistant to itraconazole were susceptible to fluconazole.  相似文献   

4.
The increase in the number of infections caused by Candida species and the consequent use of antifungal agents favours an increase of resistant isolates. The aim of this study was to evaluate the antifungal susceptibility of Candida spp. isolates from patients with different systemic predisposing factors to candidosis. Seventy-nine Candida spp. isolates were assayed for in vitro susceptibility to amphotericin B, fluconazole, 5-flucytosine and itraconazole using the technique proposed by the Clinical and Laboratory Standards Institute (CLSI). Four C. albicans, one C. guilliermondii, four C. parapsilosis and two C. tropicalis isolates were resistant to amphotericin B. Only two isolate was resistant to itraconazole. All the isolates tested were susceptible to fluconazole and flucytosine. It could be concluded that the most efficient drugs against the Candida isolates studied were fluconazole and flucytosine and that all of the antifungal agents used in this study were effective against the Candida spp. isolates tested.  相似文献   

5.
The main purpose of this study has been to determine the in vitro antifungal susceptibility of clinical isolates from HIV-infected or AIDS patients, depending on the presence of oral candidosis. The oral cavity of 307 HIV-infected or AIDS patients was examined and an oral swab was cultured on Sabouraud glucose agar and studied by conventional mycological methods. In vitro antifungal susceptibility to amphotericin B, nystatin, fluconazole, itraconazole and ketoconazole was tested by disk diffusion with Neo-Sensitabs tablets (Rosco Diagnostica, Dinamarca). One hundred and thirty five Candida albicans isolates (91 serotype A, 38 serotype B, three C. albicans variety stellatoidea and three untyped isolates), three Candida krusei and two Candida glabrata were obtained. All the isolates were susceptible to nystatin and amphotericin B. However, 7.9% isolates were resistant to fluconazole and 2.9% isolates were resistant to ketoconazole or itraconazole. Nearly all C. krusei and C. glabrata isolates, 31% patients with candidosis and 20% Candida-colonized patients showed decreased susceptibility to azoles. This study shows that polyenes had a great in vitro efficacy against clinical isolates from HIV-infected patients and that in vitro resistance to azoles is not as high as observed in other countries.  相似文献   

6.
Vaginal candidiasis continues to be a common cause of vaginal discharge, pruritus and other local complaints in women worldwide. Although numerous antimycotic agents are available for the treatment of yeast vaginitis there is little comparative data on the in vitro activity of these drugs. The objectives of this study were to isolate and identify the Candida species in the vagina and anus of patients treated in a gynaecology clinic, as well as determine the susceptibility to azolic compounds measured by the E-test method. Vaginal and rectal swabs were collected from 80 adult non-pregnant patients, seen at a gynaecological clinic, aged 18–59 years, with sexual activity, with and without vaginitis. The swabs were processed by methods routinely used for the detection of pathogenic yeasts. The susceptibility of the isolates to fluconazole, ketoconazole and itraconazole, was measured by the agar diffusion method (E-test), using RPMI 1640 medium with 2% glucose and phosphate buffer. Candida species (33) strains were isolated from 17 patients at similar proportions from both anatomical sites, and 12 patients harboured 24 strains of C. albicans in the vaginal and rectal tracts. Twenty one percent of the strains of C. albicans were resistant to ketoconazole, 54% were resistant to itraconazole and 0% were resistant to fluconazole. The sensitivity of strains isolated from the two sites were similar, indicating that these are strains of the same phenotype. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The aim of this study was to assess species distribution, antifungal susceptibility and clonal relationships among Candida strains isolated from a group of pediatric/neonatal intensive care (PICU/NICU) patients that had a very high mortality rate (76%). The cases of 21 patients (19 with candidemia, 2 with Candida meningitides) treated over a 1-year period in a Turkish hospital PICU and NICU were retrospectively analyzed. Twenty-eight Candida isolates were detected from blood (20), cerebrospinal fluid (CSF) (2) and other specimens (6). Candida species were identified using the API ID 32C System. Susceptibility testing was done (all 28 isolates) for amphotericin B, fluconazole and itraconazole using the broth microdilution method. Arbitrarily primed polymerase chain reaction (AP-PCR) was used for molecular typing of the 3 most common ones; C. albicans (15), C. parapsilosis (6), and C. pelliculosa (4). Electrophoretic karyotyping (EK) was done to check clonal identity obtained by AP-PCR. Of the 20 blood isolates, 8 (40%) were C. albicans, 12 (60%) were non-albicans Candida, and one of the 2 CSF isolates was C. albicans. The overall species distribution was as follows: 15 C. albicans isolates, 6 C. parapsilosis isolates, 4 C. pelliculosa isolates, 2 C. famata isolates and 1 C tropicalis isolate. Amphotericin B had the best antifungal activity with a MIC90 of 0.125 microg/ml, and the rates of susceptibility to fluconazole and itraconazole were 93% and 82%, respectively. AP-PCR revealed 11 genotypes (4 were identical pairs, 7 were distinct) among the 15 C. albicans isolates, 2 genotypes (5 were classified in the same type) among the 6 C. parapsilosis isolates, and 4 separate genotypes for the 4 C. pelliculosa isolates. Karyotyping results correlated well with the AP-PCR findings. As indicated in the previous research, our results confirmed that non-albicans Candida species have become more frequently causative agents for invasive fungal infections in the ICU. Transmission of C. albicans and C. pelliculosa was relatively low, but transmission of C. parapsilosis was high, suggesting that more effective control and very strict treatment protocols are needed for patients having high mortality and invasive fungal infection in ICU.  相似文献   

8.
男性尿道炎和包皮龟头炎致病真菌的分布与药敏分析   总被引:1,自引:0,他引:1  
目的了解男性念珠菌性尿道炎和包皮龟头炎的菌群分布及体外抗真菌药敏试验情况。方法菌株分离均来自复旦大学附属华山医院皮肤性病门诊临床症状轻重不一、真菌直接镜检阳性的61例患者。用科玛嘉念珠菌显色培养基及API 20C AUX鉴定系统进行菌种鉴定;采用CLSIM27-A2肉汤微量稀释法对61株临床分离念珠菌作了氟康唑、两性霉素B、氟胞嘧啶、伊曲康唑、伏立康唑、特比萘芬6种抗真菌药物敏感性测定。结果对培养阳性的61例菌株,通过科玛嘉念珠菌显色培养基及API 20C AUX鉴定系统作菌种鉴定,白念珠菌52例(85.2%),近平滑念珠菌3例,光滑念珠菌2例,热带念珠菌2例,季也蒙念珠菌1例,克柔念珠菌1例。对52株白念珠菌的药敏试验显示氟康唑98.1%敏感,1.9%剂量依赖性敏感;氟胞嘧啶96.2%敏感,3.8%耐药;伊曲康唑44.2%敏感,40.5%剂量依赖性敏感,15.3%耐药;伏立康唑84.6%敏感,15.4%耐药;两性霉素B全部敏感;特比萘芬的MIC范围为1-64μg/ml,MIC50和MIC90皆为64μg/ml。结论在男性念珠菌性尿道炎和包皮龟头炎中,白念珠菌仍是第一位致病菌,体外药敏试验显示氟康唑、伏立康唑、氟胞嘧啶、两性霉素B对男性念珠菌性尿道炎均有较好的敏感性。  相似文献   

9.
We studied six clinical isolates of Candida albicans. All six isolates showed high level resistance to fluconazole (minimum inhibitory concentrations 64 microg/ml) with varying degrees of cross-resistance to other azoles but not to amphotericin B. Neither higher dosage nor upregulation of the gene encoding the cytochrome P- 450 lanosterol 14 alpha-demethylase (CYP51A1 or P-450LDM) was responsible for fluconazole resistance. The resistant and the susceptible isolates accumulated similar amounts of azoles. To examine whether resistance to fluconazole in these clinical isolates of C. albicans is mediated by an altered target of azole action, we cloned the structural gene encoding P-450LDM from the fluconazole resistant isolates. The amino acid sequences of the P-450LDMs from the isolates were deduced from the gene sequences and compared to the P-450LDM sequence of the fluconazole-susceptible C. albicans B311. The enzymes from the clinical isolates showed 2 to 7 amino acid variations scattered across the molecules encompassing 10 different loci. One-half of the amino acid changes obtained were conserved substitutions (E116D, K143R, E266D, D278E, R287K) compared to the susceptible strain. Non-conserved substitutions were T128K, R267H, S405F, G450E and G464S, three of which are in and around the hemebinding region of the molecule. R287K is the only amino acid change that was found in all six clinical isolates. One or more of these mutational alterations may lead to the expression of an azole-resistant enzyme.  相似文献   

10.
Vulvovaginal candidiasis is a condition that affects a great number of fertile women. It is considered the second cause of genital infection after vaginosis due to GAM complex. Candida albicans is the most frequent isolated species from vaginal discharge. However, sometimes more than one yeast species could be found in the same clinical sample that are more resistant to antifungal drugs. Nowadays, it is necessary to identify properly up to species level the isolated microorganism and to determine the antifungal susceptibility profile. One hundred strains obtained from vaginal discharge of 94 patients suffering acute vulvovaginal candidiasis were studied. The identification of the isolates showed: C. albicans 86%, Candida glabrata 6%, Candida inconspicua 3%, Candida krusei 2% and Candida intermedia, Candida holmii and Trichosporon asahii one case each. Minimal inhibitory concentrations (MIC) of all the yeasts against fluconazole and albaconazole were performed. C. glabrata, C. krusei and C. inconspicua were the most resistant against fluconazole, on the other hand albicans was susceptible to this drug. All the isolates presented MIC against albaconazole much lower than fluconazole.  相似文献   

11.
The ARTEMIS Global Antifungal Susceptibility Program provides the collection of epidemiological data and the results of the fluconazole and voriconazole susceptibility testing of yeast isolates. Participating in this study, a total of 7318 clinical yeast isolates were tested from different geographical areas in Hungary in the period 2001 to 2003. The species isolated most frequently was C. albicans (68.8%), followed by C. glabrata (11.8%), C. tropicalis (5.7%) and C. krusei (4.6%). Isolates of C. albicans, C. kefyr, C. lusitaniae, C. tropicalis and C. parapsilosis were highly susceptible to fluconazole (78.9-100%). The rates of isolation of fluconazole-resistant C. glabrata and C. krusei were higher in our study than the global mean in 2001 (28.2% and 87.5% vs. 18.3% and 70.2%, respectively). Differences were detected in the distribution of fluconazole-susceptibility data of C. glabrata isolates in the different counties of Hungary: most of the resistant isolates were observed in the eastern part of the country.  相似文献   

12.
The aim of this study was to evaluate the use of one of the molecular typing methods such as PCR (polymerase chain reaction) following by RFLP (restriction fragment length polymorphism) analysis in the identification of Candida species and then to differentiate the identified azole susceptible and resistant Candida albicans strains by using AP-PCR (arbitrarily primed-polymerase chain reaction). The identification of Candida species by PCR and RFLP analysis was based on the size and primary structural variation of rDNA intergenic spacer regions (ITS). Forty-four clinical Candida isolates comprising 5 species were included to the study. The amplification products were digested individually with 3 different restriction enzymes: HaeIII, DdeI, and BfaI. All the isolates tested yielded the expected band patterns by PCR and RFLP analysis. The results obtained from this study demonstrate that Candida species can be differentiated as C. albicans and non-C. albicans strains only by using HaeIII restriction enzyme and BfaI maintains the differentiation of these non-C. albicans species. After identification Candida species with RFLP analysis, C. albicans strains were included to the AP-PCR test. By using AP-PCR, fluconazole susceptible and resistant strains were differentiated. Nine fluconazole susceptible and 24 fluconazole resistant C. albicans were included to the study. Fluconazole resistant strains had more bands when evaluating with the agarose gel electrophoresis but there were no specific discriminatory band patterns to warrant the differentiation of the resistance. The identification of Candida species with the amplification of intergenic spacer region and RFLP analysis is a practical, short, and a reliable method when comparing to the conventional time-consuming Candida species identification methods. The fluconazole susceptibility testing with AP-PCR seems to be a promising method but further studies must be performed for more specific results.  相似文献   

13.
Candida albicans is the most frequently isolated yeast from the oral cavity of HIV/AIDS individuals. The use of fluconazole has increased the number of resistant or less-sensitive Candida species different than C. albicans. The purpose of this study was to identify the Candida species producing pseudomembranous candidiasis in patients suffering from AIDS, their relationship with CD4+ counts and their sensitivity to fluconazole and itraconazole. We studied 71 patients at a hospital in the city of Cali. Samples of white plaque were seeded on CHROMagar Candida, yeast identification was done with API 20C Aux, and susceptibility testing was determined by E test. Ninety-three yeast isolates were obtained, 52 single and 41 mixed. C. albicans was the most isolated, followed by C. glabrata. An increased frequency of isolates and variety of Candida species occurred in patients with a CD4+ cell count ≤100 cells/mm3 without significant differences (p = 0.29). The susceptibility study showed that 8 (8.6 %) isolates were resistant to fluconazole and 11 (11.8 %) to itraconazole, while 6 (8.8 %) C. albicans were simultaneously resistant. No association was found between the isolates of C. albicans or Candida species different than C. albicans and the use of fluconazole (p = 0.21). The results of this study indicate that in the tested population, fluconazole continues to be the best treatment option for oropharyngeal candidiasis in patients suffering from AIDS (HIV/AIDS); however, susceptibility tests are necessary in patients who present therapeutic failure.  相似文献   

14.
Antifungal susceptibility testing was performed on 197 yeast isolates from the BCCM/IHEM biomedical fungi and yeasts collection (Belgian Co-ordinated Collections of Micro-organisms / IPH-Mycology) to study the in vitro activity of voriconazole against fluconazole, itraconazole and amphotericin B. MICs of the four antifungal agents were determined by an adapted NCCLS M27-A microdilution reference method. MIC readings were visually and spectrophotometrically determined. Optical density data were used for calculation of the MIC endpoints. For amphotericin B, the MIC endpoint was defined as the minimal antifungal concentration that exerts 90% inhibition, compared to the control growth. The azoles endpoints were determined at 50% inhibition of growth. The MIC distribution of voriconazole susceptibilities showed that 193 isolates had a MIC < or = 2 microg/ml and 185 a MIC < or = 1 microg/ml. Cross-tabulation of voriconazole, fluconazole, and itraconazole MICs indicated that voriconazole MICs raised with fluconazole and itraconazole MICs. The in vitro data obtained in this study suggest that voriconazole may also be effective treating yeast infection in patients infected with fluconazole or itraconazole resistant isolates.  相似文献   

15.
Infections caused by yeasts belonging to the genus Candida have increased dramatically in the last decades, especially in hospital settings. Concomittantly, antimycotic resistance has emerged, as well as the appearance of non-Candida albicans isolates. To standardize in vitro antifungal susceptibility tests, the agar diffusion test was developed using disks impregnated with the antimycotic compound. Electronic recording of the inhibition zone (BIOMIC), furnishes objective values for the minimal inhibitory concentration (MIC). The fluconazole susceptibility patterns were determined for Candida species isolated from 2.139 patients seen in outpatient clinics or in health-care centers in Colombia, Ecuador and Venezuela. Candida albicans was the species most frequently isolated (62%), followed at a distance by Candida parapsilosis (11%), Candida tropicalis (8.5%), Candida glabata (3.5%) and Candida krusei (2.2%). MIC determinations showed that 88.1% of these isolates were susceptible to fluconazole, 5.1% were susceptible-dose-dependant and 6.8% resistant. An important proportion (92.1%) of the C. albicans isolates proved susceptible while resistance predominated in the remaining species. These results indicate that the BIOMIC method is rapid and simple, constituting a suitable tool for the epidemiologic surveillance of resistance in Candida species.  相似文献   

16.
To describe the incidence and susceptibility profile of Candida bloodstream infections in a tertiary-care hospital, we performed a retrospective observational study from 1998 to 2007. Comorbidities and risk factors were compiled from all cases. In vitro susceptibility testing to fluconazole, itraconazole, voriconazole, and amphotericin B was performed for 100 isolates, and caspofungin was tested for C. parapsilosis complex. In a ten-year evaluation of candidemias, 44?% were caused by C. albicans, and species of the C. parapsilosis complex were the second most frequent agents (37?%). Other species presented lower incidences (C. tropicalis, 13?%, C. glabrata, 5?%, and C. krusei, 1?%). Neither C. dubliniensis nor C. metapsilosis were observed in this study. C. orthopsilosis (3?%) and C. parapsilosis stricto sensu (34?%) were also found. Species distribution was independent of catheterization, mechanical ventilation, or previous use of antifungals or corticoids. Parenteral nutrition administration was strongly related to C. glabrata infection, and the highest mortality (80?%) was observed in patients infected by this species. All C. albicans isolates showed high susceptibility to all tested drugs. However, two C. parapsilosis stricto sensu isolates presented high minimum inhibitory concentration (MIC) (4?mg/L each) to fluconazole, and one exhibited voriconazole MIC of 0.25?mg/L, highlighting the cross-resistance to these azoles. All isolates of C. tropicalis and C. glabrata showed no resistance to any drug tested. No difference was noted between C. parapsilosis and C. orthopsilosis susceptibilities to caspofungin. Our results suggest that resistance to amphotericin B, fluconazole, voriconazole, itraconazole, and caspofungin in Brazilian Candida bloodstream isolates is still uncommon.  相似文献   

17.
The many drugs that are available at present to treat fungal infections can be divided into four broad groups on the basis of their mechanism of action. These antifungal agents either inhibit macromolecule synthesis (flucytosine), impair membrane barrier function (polyenes), inhibit ergosterol synthesis (allylamines, thiocarbamates, azole derivatives, morpholines), or interact with microtubules (griseofulvin). Drug resistance has been identified as the major cause of treatment failure among patients treated with flucytosine. A lesion in the UMP-pyrophosphorylase is the most frequent clinical determinant of resistance to 5FC in Candida albicans. Despite extensive use of polyene antibiotics for more than 30 years, emergence of acquired resistance seems not be a significant clinical problem. Polyene-resistant Candida isolates have a marked decrease in their ergosterol content. Acquired resistance to allylamines has not been reported from human pathogens, but, resistant phenotypes have been reported for variants of Saccharomyces cerevisiae and of Ustilago maydis. Tolerance to morpholines is seldom found. Intrinsic resistance to griseofulvin is due to the absence of a prolonged energy-dependent transport system for this antibiotic. Resistance to azole antifungal agents is known to be exceptional, although it does now appear to be increasing in importance in some groups of patients infected with e.g. Candida spp., Histoplasma capsulatum or Cryptococcus neoformans. For example, resistance to fluconazole is emerging in C. albicans, the major agent of oro-pharyngeal candidosis in AIDS patients, after long-term suppressive therapy. In the majority of cases, primary and secondary resistance to fluconazole and cross-resistance to other azole antifungal agents seems to originate from decreased intracellular accumulation of the azoles, which may result from reduced uptake or increased efflux of the molecules. In most C. albicans isolates the decreased intracellular levels can be correlated with enhanced azole efflux, a phenomenon linked to an increase in the amounts of mRNA of a C. albicans ABC transporter gene CDR1 and of a gene (BEN(r) or CaMDR) coding for a transporter belonging to the class of major facilitator multidrug efflux transporters. Not only fluconazole, ketoconazole and itraconazole are substrates for CDR1, terbinafine and amorolfine have also been established as substrates, BEN(r) overexpression only accounts for fluconazole resistance. Other sources of resistance: changes in membrane sterols and phospholipids, altered or overproduced target enzyme(s) and compensatory mutations in the Delta5,6-desaturase.  相似文献   

18.
The dimorphic fungus Candida albicans is an opportunistic human pathogen. Candidiasis is usually treated with azole antifungal agents. However clinical treatments may fail due to the appearance of resistance to this class of antifungal agents in Candida. Echinocandin derivatives are an alternative for the treatment of these fungal infections and are active against azole resistant isolates of C. albicans. Azoles inhibit the lanosterol 14 alpha demethylase which is a key enzyme in the synthesis of ergosterol. In contrast, the echinocandin class of antibiotics inhibit noncompetitively beta-(1,3)-D-glucan synthesis in vitro. We have investigated the impact of mulundocandin on the proteome of C. albicans and compared it to those of a mulundocandin derivative, as well as to two azoles of different structure, fluconazole and itraconazole. The changes in gene expression underlying the antifungal responses were analyzed by comparative 2-D PAGE. Dose dependant responses were kinetically studied on C. albicans grown at 25 degrees C (yeast form) in synthetic dextrose medium. This study shows that antifungals with a common mechanism of action lead to comparable effects at the proteome level and that a proteomics approach can be used to distinguish different antifungals, with the promise to become a useful tool to study drugs of unknown mechanism of action.  相似文献   

19.
Sixty clinical isolates of Cryptococcus neoformans from AIDS from Goiania, state of Goiás, Brazil, were characterized according to varieties, serotypes and tested for antifungal susceptibility. To differentiate the two varieties was used L-canavanine-glycine-bromothymol blue medium and to separate the serotypes was used slide agglutination test with Crypto Check Iatron. The Minimal Inhibitory Concentration (MIC) of fluconazole, itraconazole, and amphotericin B were determined by the National Committee for Clinical Laboratory Standards macrodilution method. Our results identified 56 isolates as C. neoformans var. neoformans serotype A and 4 isolates as C. neoformans var. gattii serotype B. MIC values for C. neoformans var. gattii were higher than C. neoformans var. neoformans. We verified that none isolate was resistant to itraconazole and to amphotericin B, but one C. neoformans var. neoformans and three C. neoformans var. gattii isolates were resistant to fluconazole. The presence of C. neoformans var. gattii fluconazole resistant indicates the importance of determining not only the variety of C. neoformans infecting the patients but also measuring the MIC of the isolate in order to properly orient treatment.  相似文献   

20.
A comparative evaluation of standard microdilution methods and a commercial kit for frozen plate antifungal susceptibility testing of yeasts was performed using amphotericin B, flucytosine, fluconazole, miconazole, and itraconazole on 200 yeast isolates. The isolates included 100 strains of Candida albicans, eight of C. tropicalis, twelve of C. parapsilosis, eight of C. glabrata, five of Cryptococcus neoformans, thirteen of Trichosporon asahii, and 54 other strains of seven other species of ascomycotic yeasts. Microdilution testing was performed according to the standard method for antifungal susceptibility testing published by the Japanese Society for Medical Mycology (JSMM), which are a modification of the method developed by the National Committee for Clinical Laboratory Standards (NCCLS) M27-P. The commercial kit was prepared according to the manufacturer's instructions. The degree of agreement within +/-1 dilution for 200 clinical isolates against five antifungal agents was excellent with values for amphotericin B, flucytosine, fluconazole, miconazole, and itraconazole of 100%, 99.0%, 97.5%, 97.0%, and 97.0%, respectively. Overall, the frozen plate antifungal susceptibility testing kit provided convenient and reproducible results comparable to those obtained with the JSMM standard method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号