首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Semimature dendritic cells (smDCs) can induce autoimmune tolerance by activation of host antigen-specific CD4+CD25+ regulatory T (Treg) cells. We hypothesized that donor smDCs injected into recipients would induce effector T-cell hyporesponsiveness by activating CD4+CD25+Treg cells, and promote skin allograft survival. Myeloid smDCs were derived from C57BL/6J mice (donors) in vitro. BALB/c mice (recipients) were injected with smDCs to generate antigen-specific CD4+CD25+Treg cells in vivo. Allograft survival was prolonged when BALB/c recipients received either C57BL/6J smDCs prior to grafting or C57BL/6J smDC-derived CD4+CD25+Treg cells post-grafting, and skin flaps from these grafts showed the highest IL-10 production regardless of rapamycin treatments. Our findings confirm that smDCs constitute an independent subgroup of DCs that play a key role for inducing CD4+CD25+Treg cells to express high IL-10 levels, which induce hyporesponsiveness of effector T cells. Pre-treating recipients with donor smDCs may have potential for transplant tolerance induction.  相似文献   

3.
The function of T cell subsets in tumor-bearing mice was examined using an in vitro culture system of anti-(sheep red blood cell) antibody production, which is known to be dependent on T cells. The helper function of T cells of fibrosarcoma-MethA-bearing mice in antibody production decreased with the tumor stage of the mice. T cells were separated into CD4+ and CD8+ cells for further analysis of T cell subsets by the panning method using monoclonal antibodies. The helper function of CD4+ T cells in antibody production began to decrease significantly in tumor-bearing mice 1 week after the tumor transplantation. On the other hand, the suppressive function of CD8+ T cells was retained and had not decreased in the mice even 3 weeks after the transplantation. The same changes in function of CD4+ and CD8+ T cells were also observed in Methl-bearing mice. These results suggested that this tumor-associated immunosuppression in antibody production is attributable to the decrease in helper activity of CD4+ T cells and the maintenance of the suppressive activity of CD8+ T cells.  相似文献   

4.
5.
Alphabeta+ and gammadelta+ T cells have different mechanisms of epitope recognition and are stimulated by antigens of different chemical nature. An immunization model with antigens from the spirochete Brachyspira hyodysenteriae was used to examine the requirements for proliferation of circulating porcine CD4+ and gammadelta+ T cells in mixed lymphocyte cultures. CD4+ T cells only responded to stimulation with B. hyodysenteriae antigens, whereas gammadelta+ T cells proliferated when cultures were stimulated with either spirochetal antigens or interleukin-2 (IL-2). T cells that had proliferated expressed high levels of IL-2-receptor-alpha (IL-2Ralpha). Furthermore, neutralization of IL-2 at the beginning of the culture period was more efficient in blocking gammadelta+ than CD4+ T cell proliferation. Immunization induced interferon-gamma (IFN-gamma) production by CD4+ T cells, whereas only a small fraction of the antigen-stimulated gammadelta+ T cells produced this cytokine. Our results indicate that, under the same environmental conditions, CD4+ T cell functions are more tightly regulated when compared to gammadelta+ T cells. We conclude that these differences are due, in part, to the enhanced gammadelta+ T cell responsiveness to IL-2.  相似文献   

6.
Engagement of glucocorticoid-induced TNFR-related protein (GITR) enables the costimulation of both CD25CD4+ effector (Teff) and CD25+CD4+ regulatory (Treg) cells; however, the effects of GITR-costimulation on Treg function remain controversial. In this study, we examined the effects of GITR ligand (GITRL) binding on the respective functions of CD4+ T cells. GITRL-P815 transfectants efficiently augmented anti-CD3-induced proliferation and cytokine production by Teff cells. Proliferation and IL-10 production in Treg were also enhanced by GITRL transfectants when exogenous IL-2 and stronger CD3 stimulation was provided. Concomitant GITRL-costimulation of Teff and Treg converted the anergic state of Treg into a proliferating state, maintaining and augmenting their function. Thus, GITRL-costimulation augments both effector and regulatory functions of CD4+ T cells. Our results suggest that highly activated and increased ratios of Treg reverse the immune-enhancing effects of GITRL-costimulation in Teff, which may be problematic for therapeutic applications using strong GITR agonists.  相似文献   

7.
Ecological interactions between microparasite populations in the same host are an important source of selection on pathogen traits such as virulence and drug resistance. In the rodent malaria model Plasmodium chabaudi in laboratory mice, parasites that are more virulent can competitively suppress less virulent parasites in mixed infections. There is evidence that some of this suppression is due to immune-mediated apparent competition, where an immune response elicited by one parasite population suppress the population density of another. This raises the question whether enhanced immunity following vaccination would intensify competitive interactions, thus strengthening selection for virulence in Plasmodium populations. Using the P. chabaudi model, we studied mixed infections of virulent and avirulent genotypes in CD4+T cell-depleted mice. Enhanced efficacy of CD4+T cell-dependent responses is the aim of several candidate malaria vaccines. We hypothesized that if immune-mediated interactions were involved in competition, removal of the CD4+T cells would alleviate competitive suppression of the avirulent parasite. Instead, we found no alleviation of competition in the acute phase, and significant enhancement of competitive suppression after parasite densities had peaked. Thus, the host immune response may actually be alleviating other forms of competition, such as that over red blood cells. Our results suggest that the CD4+-dependent immune response, and mechanisms that act to enhance it such as vaccination, may not have the undesirable affect of exacerbating within-host competition and hence the strength of this source of selection for virulence.  相似文献   

8.
Since 4-1BB plays a predominant role in CD8+ T cell responses, we investigated the effects of 4-1BB triggering on the primary and memory CD8+ T responses to HSV-1 infection. 4-1BB was detected on 10-15% of CD4+ and CD8+ T cells following the infection. 4-1BB-positive T cells were in the proliferative mode and showed the enhanced expression of anti-apoptotic proteins. Agonistic anti-4-1BB treatment exerted preferential expansion of CD8+ T cells and gB/H-2Kb-positive CD8+ T cells, and enhanced cytotoxicity against HSV-1 that was mainly mediated by CD11c+CD8+ T cells. CD11c+CD8+ T cells were re-expanded following re-challenge with HSV-1 at post-infection day 50, indicating that CD11c+CD8+ phenotype was maintained in memory CD8+ T cell pool. Our studies demonstrated that 4-1BB stimulation enhanced both primary and memory anti-HSV-1 CD8+ T cell responses, which was mediated by a massive expansion of antigen-specific CD11c+CD8+ T cells.  相似文献   

9.
Allogeneic bone marrow transplantation (BMT) has become a therapy of choice for the treatment of certain malignancies and hematopoietic disorders. However, immunodeficiencies following BMT continue to cause significant morbidity and mortality. We have compared the T cell receptor (TCR) repertoire of BMT patients and healthy control individuals by staining peripheral blood mononuclear cells with fluorochrome-labeled TCR-specific antibodies. Several patients exhibited a biased pattern of TCR expression atypical of the healthy controls, yet no particular TCR bias characterized all patients. For example, we found that 2%–8% of T cell from healthy individuals expressed the V19 TCR. One BMT patient exhibited V19 expression on more than 60% of peripheral T cells, while additional patients expressed V19 on less than 1% of T cells. The patients with the most extreme skewing of TCR types suffered from graft-versus-host disease. The causes of skewed TCR V expression patterns in BMT patients are not fully understood, yet some researchers have suggested that an oligoclonal expansion of CD8+ T cell populations may be largely responsible. To test this hypothesis, we examined the TCR V repertoire of CD4+ and CD8+ T cell populations. We found that biased V expression characterized both CD4+ and CD8+ T cell populations, sometimes within a single individual. Thus, therapies directed toward CD8+ T cells alone may not fully correct repertoire abnormalities following BMT.  相似文献   

10.
CD4(+) T cells co-expressing CD25 (CD4(+)CD25(+) T cells) have been identified as immunoregulatory suppressors modulating autoimmune response. Beside that, autoimmune response was supposed to be associated with malaria infection. Based on these data, we hypothesised that CD4(+)CD25(+) T cells may influence protective immunity to malaria parasites, while suppressing autoimmune response arising throughout the course of malarial infection. To test this possibility, we evaluated the kinetics of CD4(+)CD25(+) T cells during malaria infection and investigated the influence of CD25 depletion by anti-mouse CD25 monoclonal antibody (PC61) on the infection, using a mouse model of premunition to Plasmodium berghei NK65 malaria. The results showed that, during exacerbation of P. berghei NK65 infection, the proportion of CD4(+)CD25(+) T cells among CD4(+) T cells decreased, although that of CD4(+) T cells increased. CD25 depletion clearly delayed the growth of parasitaemia during parasite challenge, particularly in immunised mice. These findings demonstrated that CD4(+)CD25(+) T cells are able to influence protective immunity underlying premunition to P. berghei NK65 parasites.  相似文献   

11.
We have been investigating whether alloantigen-specific CD4(+)25+ regulatory T cells can be identified for use in treating graft-versus-host disease. CD150, which is upregulated on the surface of all activated T lymphocytes, was identified as a candidate marker for alloantigen-activated CD4(+)25+ regulatory T cells by gene chip analysis. Freshly isolated CD4(+)25+ cells had only low cell-surface expression of CD150, comparable to that of CD4(+)25- T cells. Increased CD150 expression was observed on all T cells after coculture with allogeneic stimulator cells. When purified CD4(+)25+ cells were precultured with allogeneic stimulator cells, then sorted into CD150+ and CD150- subsets, allosuppressive activity was contained primarily in the CD150+ fraction. These cells also suppressed the proliferation of alloantigen-activated autologous T cells, and they could be expanded in vitro without loss of their suppressive capacity. These results suggest that CD150 can be used as a marker for the identification of purified alloantigen-activated CD4(+)25+ regulatory T cells.  相似文献   

12.
The severe cases of Coronavirus Disease 2019 (COVID-19) frequently exhibit excessive inflammatory responses, acute respiratory distress syndrome (ARDS), coagulopathy, and organ damage. The most striking immunopathology of advanced COVID-19 is cytokine release syndrome or “cytokine storm” that is attributable to the deficiencies in immune regulatory mechanisms. CD4+FoxP3+ regulatory T cells (Tregs) are central regulators of immune responses and play an indispensable role in the maintenance of immune homeostasis. Tregs are likely involved in the attenuation of antiviral defense at the early stage of infection and ameliorating inflammation-induced organ injury at the late stage of COVID-19. In this article, we review and summarize the current understanding of the change of Tregs in patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and discuss the potential role of Tregs in the immunopathology of COVID-19. The emerging concept of Treg-targeted therapies, including both adoptive Treg transfer and low dose of IL-2 treatment, is introduced. Furthermore, the potential Treg-boosting effect of therapeutic agents used in the treatment of COVID-19, including dexamethasone, vitamin D, tocilizumab and sarilumab, chloroquine, hydroxychloroquine, azithromycin, adalimumab and tetrandrine, is discussed. The problems in the current study of Treg cells in COVID-19 and future perspectives are also addressed.  相似文献   

13.

Background

The NKG2D receptor confers important activating signals to NK cells via ligands expressed during cellular stress and viral infection. This receptor has generated great interest because not only is it expressed on NK cells, but it is also seen in virtually all CD8+ cytotoxic T cells and is classically considered absent in CD4+ T cells. However, recent studies have identified a distinctive population of CD4+ T cells that do express NKG2D, which could represent a particular cytotoxic effector population involved in viral infections and chronic diseases. On the other hand, increased incidence of human papillomavirus-associated lesions in CD4+ T cell-immunocompromised individuals suggests that CD4+ T cells play a key role in controlling the viral infection. Therefore, this study was focused on identifying the frequency of NKG2D-expressing CD4+ T cells in patients with cervical intraepithelial neoplasia (CIN) 1. Additionally, factors influencing CD4+NKG2D+ T cell expansion were also measured.

Results

Close to 50% of patients with CIN 1 contained at least one of the 37 HPV types detected by our genotyping system. A tendency for increased CD4+ T cells and CD8+ T cells and decreased NK cells was found in CIN 1 patients. The percentage of circulating CD4+ T cells co-expressing the NKG2D receptor significantly increased in women with CIN 1 versus control group. Interestingly, the increase of CD4+NKG2D+ T cells was seen in patients with CIN 1, despite the overall levels of CD4+ T cells did not significantly increase. We also found a significant increase of soluble MICB in CIN 1 patients; however, no correlation with the presence of CD4+NKG2D+ T cells was seen. While TGF-beta was significantly decreased in the group of CIN 1 patients, both TNF-alpha and IL-15 showed a tendency to increase in this group.

Conclusions

Taken together, our results suggest that the significant increase within the CD4+NKG2D+ T cell population in CIN 1 patients might be the result of a chronic exposure to viral and/or pro-inflammatory factors, and concomitantly might also influence the clearance of CIN 1-type lesion.  相似文献   

14.
CD4+CD25+ regulatory T cells (Tr) are important in maintaining immune tolerance to self-antigen (Ag) and preventing autoimmunity. Reduced number and inadequate function of Tr are observed in chronic autoimmune diseases. Adoptively transferred Tr effectively suppress ongoing autoimmune disease in multiple animal models. Therefore, strategies to modulate Tr have become an attractive approach to control autoimmunity. Activation of Tr is necessary for their optimal immune regulatory function. However, due to the low ratio of Tr to any given antigen (Ag) and the unknown nature of Ag in many autoimmune diseases, specific activation is not practical for potential therapeutic intervention. It has been shown in animal models that once activated, Tr can exhibit immune suppression in a bystander Ag-non-specific fashion, suggesting the effector phase of Tr is Ag independent. To investigate whether the immune suppression by activated bystander Tr is as potent as that of the Ag specific Tr, Tr cells were isolated from BALB/c or ovalbumin (OVA) specific T cell receptor (TCR) transgenic mice (DO11.10) and their immune suppression of an OVA specific T cell response was compared. We found that once activated ex vivo, Tr from BALB/c and DO11.10 mice exhibited comparable inhibition on OVA specific T cell responses as determined by T cell proliferation and cytokine production. Furthermore, their immune suppression function was compared in a delayed type hypersensitivity (DTH) model induced by OVA specific T cells. Again, OVA specific and non-specific Tr exhibited similar inhibition of the DTH response. Taken together, the results indicate that ex vivo activated Ag-non-specific Tr are as efficient as Ag specific Tr in immune suppression, therefore our study provides additional evidence suggesting the possibility of applying ex vivo activated Tr therapy for the control of autoimmunity.  相似文献   

15.
A mathematical model that describes HIV infection of CD4(+) T cells is analyzed. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number R(0) < or = 1, the HIV infection is cleared from the T-cell population; if R(0) > 1, the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium P* can be unstable and periodic solutions may exist. We establish parameter regions for which P* is globally stable.  相似文献   

16.
17.

Background

It is increasingly evident that CD8+ T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8+CD25+ T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8+CD25+ T cells in experimental atherosclerosis were investigated in this study.

Methods and results

CD8+CD25+ T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8+CD25+ T cells from apoE(−/−) mice. Depletion of CD8+CD25+ from total CD8+ T cells rendered higher cytolytic activity of the remaining CD8+CD25 T cells. Adoptive transfer of CD8+CD25+ T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4+ T cells and significantly reduced atherosclerosis in recipient mice.

Conclusions

Our study has identified an athero-protective role for CD8+CD25+ T cells in experimental atherosclerosis.  相似文献   

18.
CD4+8 T lymphocytes with potent antitumor activity in vivo were obtained in peritoneal exudate cells by immunizing mice with irradiated MM48 tumor cells admixed with OK-432. These immune CD4+ T cells were used in adoptive immunotherapy for prevention of lymph node metastases after removal of the primary tumor. Complete cure of metastases was obtained by adoptive transfer of CD4+ T cells admixed with irradiated MM48 tumor cells, but not by CD4+ T cells alone. To analyze the curative effect of admixing tumor cells on the prevention of metastases, a model of 1-day tumor inoculated with macrophages was used. Administration of immune CD4+ T cells alone resulted in the regression of local tumor in more than half of the mice, although all of them eventually died of lymph node metastases. On the other hand, adoptive transfer of immune CD4+ T cells plus irradiated tumor cells resulted in the complete regression of local tumors in all the mice, which survived without any sign of metastasis. The curative effect of the immune CD4+ T cells obtained by admixing irradiated tumor cells was tumor-specific. Macrophages induced by OK-432 (tumoricidal), implanted together with tumor, assisted tumor regression more than did macrophages elicited by proteose peptone (nontumoricidal) in the same adoptive transfer system. Administration of recombinant interleukin-2 instead of stimulant tumor cells did not enhance, but rather eliminated the constitutive antitumor activity of CD4+ T cells. On the other hand, exogenous recombinant interleukin-1 was more effective in the enhancement of antitumor activity of the CD4+ T cells as compared with stimulant tumor cell administration. In this case, the activating states of macrophages at the implanted tumor site had no influence on the therapeutic efficacy. A possible role of macrophages for induction of tumor-specific cytotoxic T cells that were mediated by tumor-specific CD4+ T cells is discussed.  相似文献   

19.
To date, nanoscale imaging of the morphological changes and adhesion force of CD4+ T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4+ T cells. The AFM images revealed that the volume of activated CD4+ T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4+ T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.  相似文献   

20.
We have previously determined the protective efficacy of intranasal vaccination with chlamydial protease-like activity factor (CPAF) against genital chlamydial infection. Since T-helper 1 (Th1) responses are important for anti-chlamydial immunity, we examined the contribution of CD4(+) T cells in CPAF mediated immunity against intravaginal (i.vag.) Chlamydia muridarum infection in C57BL/6 mice. CPAF+IL-12 vaccination induced antigen-specific CD4(+) T cells that secreted elevated levels of IFN-gamma, and generated strong humoral responses. The protective effects of CPAF vaccination against genital chlamydial challenge were abrogated by anti-CD4 neutralizing antibody treatment. Moreover, anti-chlamydial immunity could be adoptively transferred to na?ve recipients using CPAF-specific CD4(+) T cells. Therefore, CPAF mediated anti-chlamydial immunity is highly dependent upon antigen-specific CD4(+) T cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号