首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of hyperoxia and change of temperature (range 20–30° C) on blood gases were studied in the teleost fish Piaractus mesopotamicus , native to several major river systems in Brazil. Large hyperoxia-induced increases of arterial P o2 ( P ao2) indicated that true branchial blood shunts are negligible in relation to total gill perfusion. This implies that blood gases will be influenced by ventilation rather than by shunts. Acute variations of temperature ( t ) were accompanied by changes of arterial blood pH (on the average Δ p HaΔt−1 of — 0·015 units °C−1), due mainly to alterations of P aco2: 2·4 mmHg at 20° C, 5·0 mmHg at 30° C. Concomitantly, P ao2 declined from 116 mmHg (20° C) to 89 mmHg (30° C). The data suggest that temperature-induced changes of acid-base status depend mainly on gill ventilation and that the decrease of P ao2 with higher temperature is a result of this regulation.  相似文献   

2.
Oxygen consumption (o2) and respiratory variables were measured in the Prochilodontid fish, Prochilodus scrofa exposed to graded hypoxia after changes in temperature. The measurements were performed on fish acclimated to 25°C and in four further groups also acclimated to 25°C and then changed to 15, 20, 30 and 35°C. An increase in o2 occurred with rising temperature, but at each temperature o2 was kept constant over a wide range of O2 tensions of inspired water ( Pi o2). The critical oxygen tensions ( Pc o2) were Pi o2= 22 mmHg for 25°C acclimated specimens and after transfer from 25°C to 15, 20, 30 and 35°C the Pc o2 changed to Pi o2= 28, 22, 24 and 45 mmHg, respectively. Gill ventilation ( G ) increased or decreased following the changes in o2 as the temperature changed and was the result of an accentuated increase in breath frequency. During hypoxia the increases in G were characterized by larger increases in breath volume. Oxygen extraction was kept almost constant at about 63% regardless of temperature and ambient oxygen tensions in normoxia and moderate hypoxia ( P o2∼70 mmHg). P. scrofa showed high tolerance to hypoxia after abrupt changes in temperature although its survival upon transfer to 35°C could become limited by the capacity of ventilatory mechanisms to alleviate hypoxic stress.  相似文献   

3.
Abstract: Spinal cord tissue pH was measured in cats at normocapnia, hypocapnia, hypercapnia and death from anoxia using a pH-sensitive fluorescent indicator (umbelliferone) with both molecular and ionic fluorophors. A ratio analysis of the indicator's calibrated 450 nm fluorescent tissue clearance curves from 340 and 370 nm excitation permitted direct in vivo tissue pH determinations. Fifteen animals were divided into three equal groups according to different arterial carbon dioxide tensions (Pa co2):five animals at Pa co2 20, five animals Pa co2 40 and five animals Pa co2 60 torr. Spinal cord tissue pH varied linearly with arterial pH, but within narrower limits. These values (arterial versus cord pH) were: 7.46 versus 7.15; 7.21, 7.09; and 7.04, 7.00. At death from hypoxemia the arterial pH fell to 6.99 and spinal cord to 6.67. The clearance curves of umbelliferone in spinal cord varied according to Pa co2 and appeared to reflect spinal cord blood flow.  相似文献   

4.
Atlantic salmon Salmo salar with amoebic gill disease (AGD) were exposed to a graded hypoxia (135–40 mmHg water P O2) and blood samples analysed for respiratory gases and pH at 119, 79·5 and 40 mmHg water P O2. There were no differences in the rate of oxygen uptake between infected and control fish. However, arterial P O2, and pH were significantly lower in the infected fish whereas P CO2 was significantly higher in infected fish compared with controls prior to hypoxia and at 119 mmHg water P O2. At 79·5 and 40 mmHg water P O2 saturation, there were no significant differences in blood P O2 or pH although blood P CO2 was elevated in AGD affected fish at 50% hypoxia (79·5 mmHg water P O2). The elevated levels of P CO2 in fish affected by AGD resulted in a persistent respiratory acidosis even during hypoxic challenge. These data suggest that even though the fish were severely affected by AGD, the presence of AGD while impairing gas transfer under normoxic conditions, did not contribute to respiratory failure during hypoxia.  相似文献   

5.
Oxygen consumption of carp acclimated at 10 and 20° C has been measured under routine conditions. Some complications and precautions necessary in continuous flow respirometry are discussed. Routine V o2 at different levels of hypoxia have been determined. Individual variation leads to scatter in the data and different methods of plotting the relationship between V o2 and P o2 are proposed; attention is drawn to differences between inlet (or ambient) P o2 and inspired P o2. Using certain criteria a 'critical' oxygen tension of about 95 mm Hg was found at 20° C; Q 10 values are about 2 at normoxia and some suggestions of an increase near to the critical oxygen tension were found. Blood samples from the dorsal aorta showed rising Pa,o2 of 16 mm Hg which increased to 70–80 mm Hg when P insp was 90 and they then fall as the inspired oxygen is lowered. During periods of deep hypoxia (25 mm Hg) blood lactate concentration increases steadily and indicates an increasing dependence on anaerobic mechanisms.  相似文献   

6.
Rhinelepis strigosa did not surface for air breathing in normoxic or moderate hypoxic water. This species initiated air breathing when the P io2 in the water reached 22 ± 1 mmHg. Once begun, the air-breathing frequency increased with decreasing P io2. Aquatic oxygen consumption was 21·0 ± 1·9ml O2 kg−1h−1 in normoxic water, and was almost constant during progressive hypoxia until the P io2 reached 23·9 mmHg, considered the critical oxygen tension (Pco2). Gill ventilation increased until close to the P co2 (7·9-fold) as a consequence of a greater increase in ventilatory volume than in breathing frequency. Gill oxygen extraction was 42 ± 5% and decreased with hypoxia, but under severe hypoxia returned to values characteristic of normoxic. The critical threshold for air breathing was coincident with the Pco2 during aquatic respiration. This suggests that the air-breathing response is evoked by the aquatic oxygen tension at which the respiratory mechanisms fail to compensate for environmental hypoxia, and the gill O2 uptake becomes insufficient to meet O2 requirements.  相似文献   

7.
Major ion and carbonate system chemistry of a navigable freshwater canal   总被引:1,自引:0,他引:1  
SUMMARY. 1. An examination has been made of the water quality of a 50 km (Wigan to Litherland) length of the Leeds-Liverpool canal. Regular in situ measurements accompanied by sampling for laboratory analysis were made at seventeen stations over a 15-month period.
2. Three principal contributory water types have been recognized, and the observations have allowed estimates to be made of their relative contributions to the total water flux in the lower reaches of the system. Linear flow rates ( c . 0.6 km day−1 near Litherland) are consistent with previous reports.
3. The combined field and laboratory measurements have been used to obtain estimates of the partial pressure of CO2 in the water ( P co2), the degree of saturation of the water with respect to calcite (Ω) and the major ion speciation in the water. Because of the variable ionic compositions of the waters examined, these estimates were made using a program (WATEQ) which took account of ion-pairing.
4. Diurnal and annual cycles with respect to pH, P co2 and ω occur, these being most marked in the lower parts of the study length when, for a large proportion of the spring and summer, P co2 was below the atmospheric level and noticeable supersaturation with respect to calcite occurred. In contrast, two of the contributory water types, the River Douglas input and the Creek, showed low pH and Ω values and high P co2 values throughout the year.  相似文献   

8.
The physiological and anaesthetic effects of three different levels of air-saturated and buffered CO2 anaesthesia, P w co 2=31, 78, or 125 mmHg, were examined in cannulated rainbow trout Oncorhynchus mykiss . Complete anaesthesia (no opercular movements) was not achieved by these hypercapnic levels after 20 min of CO2 exposure. Although increasing P w co 2 reduced the induction times to the early stages of anaesthesia, it also resulted in increasing hyperventilatory, hypoxaemic, and acid-base disturbances. After a 10-min recovery period, while the respiratory acidosis component of the acid-base disturbance was corrected, there was a significant metabolic acidosis. Recovery time was longest in the high Pw co2 treatment where 33% of the fish died. Two additional groups ( P w co 2=37 and 78 mmHg) were exposed to an acute stress prior to the anaesthetic treatment. Stress reduced the hypoventilatory effects of the low P w co2 treatment, increased the recruitment of anaerobic metabolism, and prolonged recovery time. Although the increase in plasma catecholamines elicited by the stress was small relative to the response obtained with the anaesthetic, stress prior to CO2 anaesthesia impaired the efficiency of the treatment. Overall, our results suggest that P w co2 levels above 37 mmHg and/or stress prior to the anaesthesia impair the efficiency of air-saturated and buffered CO2 anaesthesia by exacerbating the hypoxaemic effects of the hypercapnic treatment.  相似文献   

9.
This study tests whether or not post-exercise oxygen consumption rates ( M o2) in fish are dependent upon how exhaustion is induced. A group of eight Atlantic cod ( Gadus morhua ) were each exercised using (1) a critical swimming speed ( U crit) protocol, (2) an exercise protocol designed to measure anaerobic capacity of fish ( U burst), and (3) a protocol in which the fish were chased to exhaustion manually. M o2 was measured for a 2-h period following exhaustion induced by all three exercise regimes ( U crit, U burst and chase). Post-exercise M o2 following exhaustion from the U burst and chase protocols were significantly higher than post-exercise M o2 following the U crit protocol. Each fish during the U crit protocol exhibited maximal M o2 during exercise rather than during recovery, yet 75% of the fish during U brust recovery and 100% during chase recovery exhibited M o2 higher than that measured during U crit exercise. These results, as well as the large interindividual variations in M o2 among the eight fish, show that post-exhaustion M o2 is specific to the exercise regime employed, thus, investigators must exercise caution when combining results from different exercise protocols and/or individuals.  相似文献   

10.
The percentage contribution of heart rate ( f H) to change in oxygen consumption ( V o2) was examined in relation to body weight and across the metabolic scope of pike. Also the consequences of variability around the regression relating V o2 and f H for estimating V o2 were considered. The percentage contribution of f H was calculated using two equations, one that ignored and one that included an estimate for oxygen consumed by the gills and absorbed across the skin ( V o2s). Using both equations the percentage contribution of f H calculated using maximum and resting values for f H and V o2 decreased with weight of pike. The omission of V o2s, resulted in erroneously high estimates of the percentage contribution of f H for pike of any given weight. The omission of V o2s resulted in erroneously high estimates of the percentage contribution of f H over the region of the metabolic scope where f H is related linearly to V o2, whereas the equation that included V o2s resulted in the expected value of 100%. Assuming zero experimental error and under normoxic conditions, the 95% confidence limits for single estimates of V o2 from 30–60-min readings of heart rate are ±39% at a heart rate of 30 beats min −1. Averaged over longer periods the error decreases, and used over several days to estimate meal size the error is of the order of 1%.  相似文献   

11.
The oxygen uptake ( V O2), breathing frequency ( f R), breath volume ( V S.R), gill ventilation ( V G) and oxygen extraction (%) from the ventilatory current of four groups of Oreochromis niloticus during graded hypoxia were measured under the following acclimation temperatures: 20. 25. 30 and 35°C. The critical oxygen tensions ( P O2), determined from V O2 v. P O2 of inspired water at each experimental temperature were, respectively. 19±1±3±1. 18±0±4±9, 29±7± 4±1 and 30±2± 0.6 mmHg. The f R remained nearly constant during the reductions of O2 at all the temperatures studied. V G increased discretely from normoxic levels until the P O2 was reached, below which it assumed extremely high values (17-fold higher or more). The increases observed in V G resulted, at all the acclimation temperatures, in an elevation in V S.R rather than in f R. The extraction of O2 decreased gradually from normoxia until the P O2 was reached, below which an abrupt reduction of extraction was recorded, except at 35°C when fish showed a gradual reduction in extraction just below the tension of 80 mmHg.  相似文献   

12.
Rainbow trout, Salmo gairdneri , cannulated in the dorsal aorta, were exposed to 2 mgl−1 aluminium (added as Al2(SO4)3, 18H2O) at pH = 5.0 in hard water of very high calcium concentrations (3.3 mmol 1−1). No changes were observed in the concentration of the major plasma ions. The fish, however, became hypoxic, as seen from a fall in the dorsal aortic oxygen tension from around 100 mmHg to 30–40 mmHg, and a simultaneous increase in carbon dioxide tension. Moreover, exposure resulted in a 15% increase in standard oxygen uptake. The ventilation frequency doubled and swelling of the erythrocytes was observed. The results are discussed in the light of some earlier data on the effects of acid/aluminium exposure in water of low calcium concentration, and reveal an important role for calcium in the physiological responses to low pH and aluminium.  相似文献   

13.
Predominantly, Hoplias malabaricus inhabits stagnant O2 poor environments, whereas Hoplias lacerdae occurs in well-aerated streams. The present study evaluates the influence of mode of life on O2 uptake and gill ventilation in equally-sized (300 g) specimens of this genus at 25° C. Comparing the species, H. lacerdae was characterized by the highest O2 uptake and gill ventilation combined with a relatively higher cost of breathing and a lower O2 extraction. Both species substantially increased ventilation in response to hypoxia with the difference that H. malabaricus exclusively augmented tidal volume, whereas H. lacerdae also increased breathing frequency.  相似文献   

14.
Aquatic and aerial respiration of the amphibious fishes Lipophrys pholis and Periophthalmus barbarus were examined using a newly designed flow-through respirometer system. The system allowed long-term measurements of oxygen consumption and carbon dioxide release during periods of aquatic and aerial respiration. The M o 2 of L. pholis , measured at 15° C, was 2·1 μmol O2 g–1 h–1 during aquatic and 1·99 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the M co2 were 1.67 and 1.59 μmol O2 g–1 h–1 respectively, giving an aquatic respiratory exchange ratio (RER) of 0·80 and an aerial RER of 0·79. The M o2 of P. barbarus , measured at 28°C, was 4·05 μmol O2 g–1 h–1 during aquatic and 3·44 μmol O2 g–1 h–1 during aerial exposure. The corresponding values of the Mco2 were 3·29 μmol CO2 g–1 h–1 and 2·63 μmol CO2 g–1 h–1 respectively, giving an aquatic RER of 0·81 and an aerial RER of 0·77. While exposed to air for at least 10 h, both species showed no decrease in metabolic rate or carbon dioxide release. The RER of these fishes equalled their respiratory quotient. After re-immersion an increased oxygen consumption, due to the payment of an oxygen debt, could not be detected.  相似文献   

15.
Rainbow trout were exposed (90 days) in synthetic soft water to sublethal low pH (5.2) and a simulated climate warming scenario (+2°C above the control summer temperature range of 16.5–21° C), alone and in combination, under conditions of limited food (∼4% dry body weight day−1). Weight specific oxygen consumption rates ( M o2) were ∼55% of M o2(max), in contrast to ∼75% of M o2(max) found in trout fed an unlimited ration. This is likely due to a reduction in food quantity and thus feeding activity. However, the trout exposed to low pH at control temperatures exhibited higher conversion efficiencies and increased growth. In contrast, trout exposed to +2°C had reduced growth rates. No ionoregulatory disturbance occurred in any treatment, suggesting that this ration was sufficient to provide a replacement salt load in the diet. Energy budgets indicated that the limited ration resulted in a lowered optimum temperature for growth, with a greater proportion of the energy intake dissipated for metabolic expenditure, resulting in reduced conversion efficiencies. A fourfold reduction in faecal and unaccounted energy losses indicated higher absorption efficiencies than in satiation-fed trout.  相似文献   

16.
Novel field measurements of critical swimming speed ( U crit) and oxygen uptake (  M o2) in three species of adult Pacific salmon Oncorhynchus spp. up to 3·5 kg in body mass were made using two newly designed, mobile Brett-type swim tunnel respirometers sited at a number of field locations in British Columbia, Canada. Measurements of U crit, which ranged from 1· 68 to 2·17 body lengths s−1, and maximum M o2, which ranged from 8·74 to 12·63 mg O2 kg−1 min−1 depending on the species and field location, were judged to be of similar quality when compared with available data for laboratory-based studies. Therefore high quality respirometry studies were possible in the field using adult wild swimming salmonids. In addition, the recovery of wild adult Pacific salmon from the exhaustive U crit swim test was sufficiently rapid that swimming performance could be repeated with <1 h of recovery time between the termination of the initial swim test and the start of the second test. Moreover, this repeat swimming performance was possible without routine M o2 being reestablished. This result suggests that wild adult salmon are capable of carrying a moderate excess post-exercise oxygen consumption without adversely affecting U crit, maximum M o2 or swimming economy. Such capabilities may be extremely important for timely migratory passages when salmonids face repetitive hydraulic challenges on their upstream migration.  相似文献   

17.
The effect of O2 concentration on energy metabolism and senescence has been studied in cut flowers of Dianthus caryophyllus L. cv. Scania. As compared to the control (21% O2), 5% O2 delays flower senescence as well as decay of nucleotide level and AEC (adenylate energy charge). An atmosphere of 100% O2 accelerates senescence as well as the decrease of nucleotide level and AEC. While anoxia brings about a faster decrease of ATP and AEC than of total nucleotides, hyperoxia brings about a faster decrease in adenyl nucleotides than in ATP and AEC values. Petal oxygen uptake is over 90% of the maximal value under 4% O2 and saturates at 10% O2. The development of senescence is dicussed as a two phase process (first phase-progressive and second phase-catastrophic) triggered by the action of hyperoxia, first on the system for energy utilization and later on the system for energy production, the degradation of which seems to be linked with increase in membrane permeability and withering.  相似文献   

18.
Hyperoxia has been shown to attenuate the increase in pulmonary artery (PA) pressure associated with immersed exercise in thermoneutral water, which could serve as a possible preventive strategy for the development of immersion pulmonary edema (IPE). We tested the hypothesis that the same is true during exercise in cold water. Six healthy volunteers instrumented with arterial and PA catheters were studied during two 16-min exercise trials during prone immersion in cold water (19.9-20.9°C) in normoxia [0.21 atmospheres absolute (ATA)] and hyperoxia (1.75 ATA) at 4.7 ATA. Heart rate (HR), Fick cardiac output (CO), mean arterial pressure (MAP), pulmonary artery pressure (PAP), pulmonary artery wedge pressure (PAWP), central venous pressure (CVP), arterial and venous blood gases, and ventilatory parameters were measured both early (E, 5-6 min) and late (L, 15-16 min) in exercise. During exercise at an average oxygen consumption rate (Vo(2)) of 2.38 l/min, [corrected] CO, CVP, and pulmonary vascular resistance were not affected by inspired (Vo(2)) [corrected] or exercise duration. Minute ventilation (Ve), alveolar ventilation (Va), and ventilation frequency (f) were significantly lower in hyperoxia compared with normoxia (mean ± SD: Ve 58.8 ± 8.0 vs. 65.1 ± 9.2, P = 0.003; Va 40.2 ± 5.4 vs. 44.2 ± 9.0, P = 0.01; f 25.4 ± 5.4 vs. 27.2 ± 4.2, P = 0.04). Mixed venous pH was lower in hyperoxia compared with normoxia (7.17 ± 0.07 vs. 7.20 ± 0.07), and this result was significant early in exercise (P = 0.002). There was no difference in mean PAP (MPAP: 28.28 ± 8.1 and 29.09 ± 14.3 mmHg) or PAWP (18.0 ± 7.6 and 18.7 ± 8.7 mmHg) between normoxia and hyperoxia, respectively. PAWP decreased from early to late exercise in hyperoxia (P = 0.002). These results suggest that the increase in pulmonary vascular pressures associated with cold water immersion is not attenuated with hyperoxia.  相似文献   

19.
Rates of oxygen consumption were measured in the geothermal, hot spring fish, Oreochromis alcalicus grahami by stopped flow respirometry. At 37° C, routine oxygen consumption followed the allometric relationship: V o2=0.738 M 0.75, where V o2 is ml O2 h −1 and M is body mass (g). This represents a routine metabolic rate for a 10 g fish at 37° C of 0.415 ml O2 g−1 h −1 (16.4 μmol O2 g −1 h −1). Acutely increasing the temperature from 37 to 42° C significantly elevated the rate of O2 consumption from 0.739 to 0.970 ml O2 g −1 h −1 ( Q 10=l.72). In the field, O. a. grahami was observed to be 'gulping' air from the surface of the water especially in hot springs that exceeded 40° C. O. a. grahami may utilize aerial respiration when O2 requirements are high.  相似文献   

20.
A comparative study of blood oxygen binding and carrying capacities of turbot Scophthalmus maximus and sea bass Dicentrarchus labrax , two fish species differing in their demand for oxygen, was carried out under three levels of chronic hypoxia ( P o 2 = 93, 65 and 40 mmHg) for 40 days. Blood O2 affinity in normoxia was moderately high in both species ( P 50 was c . 12–13 mmHg at pH 7·7). The Bohr factor was significantly lower in turbot (−0·52) than in sea bass (−0·85). In both species, blood O2 affinity was not significantly affected by oxygen depletion whatever its level and duration. In turbot, however, P 50 appeared to slightly decrease at the two more severe levels of hypoxia. In both species, blood O2 carrying capacity was not affected by hypoxia and remained twice as high in sea bass than in turbot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号