首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C. M. Bristow 《Oecologia》1991,87(4):514-521
Summary Oleander aphids, (Aphis nerii), which are sporadically tended by ants, were used as a moded system to examine whether host plant factors associated with feeding site influenced the formation of ant-aphid associations. Seasonal patterns of host plant utilization and association with attendant ants were examined through bi-weekly censuses of the aphid population feeding on thirty ornamental oleander plands (Nerium oleander) in northern California in 1985 and 1986. Colonies occurred on both developing and senescing plant terminals, including leaf tips, floral structures, and pods. Aphids preferentially colonized leaf terminals early in the season, but showed no preference for feeding site during later periods. Argentine ants (Iridomyrmex humilis) occasionally tended aphid colonies. Colonies on floral tips were three to four times more likely to attract ants than colonies on leaf tips, even though the latter frequently contained more aphids. Ants showed a positive recruitment response to colonies on floral tips, with a significant correlation between colony size and number of ants. There was no recruitment response to colonies on leaf tips. These patterns were reproducible over two years despite large fluctuations in both aphid population density and ant activity. In a laboratory bioassay of aphid palatability, the generalist predator,Hippodamia convergens, took significantly more aphids reared on floral tips compared to those reared on leaf tips. The patterns reported here support the hypothesis that tritrophic factors may be important in modifying higher level arthropod mutualisms.  相似文献   

2.
Herbivore dynamics and community structure are influenced both by plant quality and the actions of natural enemies. A factorial experiment manipulating both higher and lower trophic levels was designed to explore the determinants of colony growth of the aphid Aphis jacobaeae, a specialist herbivore on ragwort Senecio jacobaea. Potential plant quality was manipulated by regular addition of NPK-fertiliser and predator pressure was reduced by interception traps; the experiment was carried out at two sites. The size and persistence of aphid colonies were measured. Fertiliser addition affected plant growth in only one site, but never had a measurable effect on aphid colony growth. In both habitats the action of insect predators dominated, imposing strong and negative effects on aphid colony performance. Ants were left unmanipulated in both sites and their performance on the aphid colonies did not significantly differ between sites or between treatments. Our results suggest that, at least for aphid herbivores on S. jacobaea, the action of generalist insect predators appears to be the dominant factor affecting colony performance and can under certain conditions even improve plant productivity.  相似文献   

3.
This study focused on three species of enemies, the parasitoid wasp Lysiphlebus japonicus Ashmead (Hymenoptera: Aphidiidae), the ladybird Scymnus posticalis Sicard (Coleoptera: Coccinellidae) and the predatory gall midge Aphidoletes aphidimyza (Rondani) (Diptera: Cecidomyiidae), all of which are able to exploit aphids attended by ants. I experimentally evaluated the effects of prey aphid species on the abundance of each of the three enemy species in ant‐attended aphid colonies on citrus. The aphids compared were Aphis gossypii Glover versus Aphis spiraecola Patch in late spring, and Toxoptera citricidus (Kirkaldy) versus A. spiraecola in late summer (all, Hemiptera: Aphididae). Colonies of the three aphid species were attended by the ant Pristomyrmex punctatus Smith (Hymenoptera: Formicidae). The initial number of attending ants per individual aphid did not differ significantly between the colonies of the two aphid species compared in each season. Between A. gossypii and A. spiraecola, there was no significant difference in the number of mummies formed by the parasitoid or foraging larvae of each of the two predators per aphid colony. A significant difference was detected between T. citricidus and A. spiraecola for each of the three enemy species, with a far greater number of L. japonicus mummies in T. citricidus colonies and distinctly more larvae of each of the two predators in A. spiraecola colonies. Thus, the abundance of each of the three enemy species in ant‐attended aphid colonies was significantly influenced by the species of the prey aphids, with the three enemies showing different responses to the three aphid species.  相似文献   

4.
Aphid suppression by natural enemies in mulched cereals   总被引:2,自引:0,他引:2  
Large populations of natural enemies are the basis for natural pest control. Effects of mulch on predator–prey interactions in arable fields are poorly known, despite its potential to enhance ground‐dwelling predators and thereby reduce pest infestations. We studied the densities of predators and parasitoids, and their impact on cereal aphids in the presence and absence of mulch. Released populations of the bird cherry aphid, Rhopalosiphum padi (L.) (Homoptera: Aphididae), and two naturally occurring aphid species, were monitored under experimentally reduced densities of: (i) ground‐dwelling predators, (ii) flying predators and parasitoids, and (iii) with straw mulch. The three treatments were applied in a 2 × 2 × 2 factorial design in a field of spring wheat (Triticum aestivum L.). The exclusion of ground‐dwelling predators increased aphid populations by 55% in June and 40% in July, respectively. Mulched plots had 25% lower aphid densities in June. This was presumably due to enhanced densities of spiders (Araneida) in mulched plots. The exclusion of flying predators and parasitoids led to 94% higher aphid populations in late July (109 vs. 56 individuals per 100 shoots), irrespective of mulch or ground predator manipulation. This was attributed to the larvae of gall midges Aphidoletes cf. aphidimyza (Rondani) (Diptera: Cecidomyiidae) and hoverflies (Diptera: Syrphidae). The results indicate that a scarcity of predators and a bare soil surface renders crops more susceptible to arthropod pests. Farming schemes should aim at enhancing both ground‐dwelling and flying predators for elevated levels of natural pest control.  相似文献   

5.
Colonies of a Cerataphis species with well‐developed horns were found on the rattan Calamus quinquesstinervis in southern Taiwan. The morphology of first instar nymphs from the colonies accorded well with the morphology of first instar nymphs laid by alates of Cerataphis jamuritsu from galls on Styrax suberifolia, indicating that the rattan aphids are the secondary host generation of C. jamuritsu. Although the aphid colonies were attended by ants, the sharp horns of the first instar nymphs suggest that they might attack predators.  相似文献   

6.
Interaction between a predator and a parasitoid attacking ant-attended aphids was examined in a system on photinia plants, consisting of the aphid Aphis spiraecola, the two ants Lasius japonicus and Pristomyrmex pungens, the predatory ladybird beetle Scymnus posticalis, and the parasitoid wasp Lysiphlebus japonicus. The ladybird larvae are densely covered with waxy secretion and are never attacked by attending ants. The parasitoid females are often attacked by ants, but successfully oviposit by avoiding ants. The two ants differ in aggressiveness towards aphid enemies. Impacts of the predator larvae and attending ant species on the number of parasitoid adults emerging from mummies per aphid colony were assessed by manipulating the presence of the predator in introduced aphid colonies attended by either ant. The experiment showed a significant negative impact of the predator on emerging parasitoid numbers. This is due to consumption of healthy aphids by the predator and its predation on parasitized aphids containing the parasitoid larvae (intraguild predation). Additionally, attending ant species significantly affected emerging parasitoid numbers, with more parasitoids in P. pungens-attended colonies. This results from the lower extent of interference with parasitoid oviposition by the less aggressive P. pungens. Furthermore, the predator reduced emerging parasitoid numbers more when P. pungens attended aphids. This may be ascribed to larger numbers of the predator and the resulting higher levels of predation on unparasitized and parasitized aphids in P. pungens-attended colonies. In conclusion, a negative effect of the predator on the parasitoid occurs in ant-attended aphid colonies, and the intensity of the interaction is affected by ant species.  相似文献   

7.
Aphid–ant associations are often described as mutually beneficial interactions in which honeydew is traded for protection from predators and parasitoids. The aim of the present study was to determine parasitization avoidance in ant‐tended aphid colonies. Field experiments were carried out on two host plants: hoary cress Lepidium draba (Brassicaceae) and Canadian teasel Cirsium arvense (Asteraceae). Lepidium was host to Acyrthosiphon gossypii (Aphididae) tended by the ant Lasius turcicus (Formicidae) and attacked by two parasitoids, Trioxys asiaticus (Braconidae) and Lysiphlebus fabarum (Braconidae). Cirsium was host to Brachycaudus cardui tended by Crematogaster sordidula and attacked by L. fabarum and Aphidius colemani (Braconidae). The per capita population growth rate of A. gossypii was significantly higher in the presence of ants, while B. cardui was negatively affected, albeit non‐significantly. The parasitism rate of A. gossypii decreased significantly when tended by Lasius turcicus, but the presence of Crematogaster sordidula in colonies of B. cardui significantly increased parasitism. Our results indicate that the effects of ant attendance vary between different aphid–ant interactions. Moreover, parasitoids can benefit from the presence of ants under some conditions.  相似文献   

8.
During a five‐year field study, we made observations and conducted experiments to demonstrate unequivocally that Euphyonarthex phyllostoma (Fulgoromorpha: Tettigometridae) is a myrmecophile. Isolated adults and colonies always were found in association with ants. Colonies were associated only with Camponotus brutus or C. acvapimensis (For‐micinae), whereas isolated adults were attended by ants belonging to several species of Formicinae, Dolichoderinae, and Myrmicinae. The size of the planthopper colonies reached higher levels when attended by C. brutus than by C. acvapimensis. Experiments using ant exclusion showed that both ant species protected egg masses against parasitic wasps, but egg masses were less parasitized on trees occupied by C. brutus than on those occupied by C. acvapimensis (P = 0.0052). The production of egg masses by female hoppers was recorded only when C. brutus, C. acvapimensis, or the myrmicine ant Myrmicaria opaciventris attended the hopper. In both former cases, the presence of ants influenced the aggregation of the nymphs as they dispersed when ants were excluded. The aggregation of the nymphs ensured chat they were properly attended. Parental care by the females was reduced to their presence above or close to the egg masses. In fact, specialized workers of the attending ant species protected the egg masses as well as nymphs.  相似文献   

9.
1. Predation‐exclusion experiments have highlighted that top‐down control is pervasive in terrestrial communities, but most of these experiments are simplistic in that they only excluded a single group of predators and the effect of removal was evaluated on a few species from the community. The main goal of our study was to experimentally establish the relative effects of ants and birds on the same arthropod assemblage of canopy trees. 2. We conducted 1‐year long manipulative experiments in an organic citrus grove intended to quantify the independent effects of bird and ant predators on the abundance of arthropods. Birds were excluded with plastic nets whereas ants were excluded with sticky barriers on the trunks. The sticky barrier also excluded other ground dwelling insects, like the European earwig Forficula auricularia L. 3. Both the exclusion of ants and birds affected the arthropod community of the citrus canopies, but the exclusion of ants was far more important than the exclusion of birds. Indeed, almost all groups of arthropods had higher abundance in ant‐excluded than in control trees, whereas only dermapterans were more abundant in bird‐excluded than in control trees. A more detailed analysis conducted on spiders also showed that the effect of ant exclusion was limited to a few families rather than being widespread over the entire diverse spectrum of spiders. 4. Our results suggest that the relative importance of vertebrate and invertebrate predators in regulating arthropod populations largely depends on the nature of the predator–prey system.  相似文献   

10.
Survival rates of both early and middle instar larvae of the nymphalid butterfly, Sasakia charonda, were estimated to be lowest on test trees planted in a meadow (site A), intermediate in a small, narrow secondary deciduous broadleaf forest (small patch, site B) and highest in a large secondary deciduous broadleaf forest (large forest, site C). The larval mortality rates due to predation by tree-climbing predators from the ground (tree climbing predator) such as ants and the larvae of carabids were estimated to be greater at sites A and B than those at site C. The number of predatory ants climbing test trees was significantly greater at sites A and B than at site C, and the ants harvested honeydew from aphids living on tree leaves at those two sites. Aphid densities were significantly higher on trees at sites A and B than at site C, and aphid densities and numbers of predatory ants were significantly and positively correlated at sites A and B. In an experiment controlling aphid density per branch on test trees, the numbers of ants and the mortality rates of S. charonda larvae were greater on branches with high aphid densities than on those with low aphid densities at both sites A and B. These results suggest that the aphid density per host tree was higher in the meadow and the small patch than in the large forest; at both sites these higher aphid densities attracted higher numbers of predatory ants to test trees, and as a result, mortality rates of S. charonda larvae were increased.  相似文献   

11.
Mechanisms that allow for the coexistence of two competing species that share a trophic level can be broadly divided into those that prevent competitive exclusion of one species within a local area, and those that allow for coexistence only at a regional level. While the presence of aphid‐tending ants can change the distribution of aphids among host plants, the role of mutualistic ants has not been fully explored to understand coexistence of multiple aphid species in a community. The tansy plant (Tanacetum vulgare) hosts three common and specialized aphid species, with only one being tended by ants. Often, these aphids species will not coexist on the same plant but will coexist across multiple plant hosts in a field. In this study, we aim to understand how interactions with mutualistic ants and predators affect the coexistence of multiple species of aphid herbivores on tansy. We show that the presence of ants drives community assembly at the level of individual plant, that is, the local community, by favoring one ant‐tended species, Metopeurum fuscoviride, while preying on the untended Macrosiphoniella tanacetaria and, to a lesser extent, Uroleucon tanaceti. Competitive hierarchies without ants were very different from those with ants. At the regional level, multiple tansy plants provide a habitat across which all aphid species can coexist at the larger spatial scale, while being competitively excluded at the local scale. In this case, ant mutualist‐dependent reversal of the competitive hierarchy can drive community dynamics in a plant–aphid system.  相似文献   

12.
《Biological Control》2004,29(2):189-198
Spirea aphid populations and their predators were studied on apple to identify predators of importance in controlling aphid populations. Methods included random and non-random sampling from apple orchards in West Virginia, USA, sentinel aphid colonies, laboratory feeding studies, and predator exclusion studies. Aphidoletes aphidimyza (Diptera: Cecidomyiidae), chrysopids (Neuroptera: Chrysopidae), Harmonia axyridis (Coleoptera: Coccinellidae), and Orius insidiosus (Hemiptera: Anthocoridae) were the most abundant predators associated with spirea aphid colonies on apple. Parasitoids were all but absent in the study. Abundance of all predators was density dependent with greater responses to aphid populations at the orchard scale than to tree or individual colony scales. A. aphidimyza, O. insidiosus, chrysopids, and syrphids (Diptera) had the greatest degree of density dependence on aphid populations, and spiders showed inverse density dependence. Exclusion of predators with both cages and insecticides produced significantly higher aphid populations. Because of high abundance, good synchrony with aphid populations, and high impact per individual, H. axyridis adults were the most important spirea aphid predator on apple.  相似文献   

13.
A species’ genotype can have extended consequences for the structure of the surrounding community, but few studies have investigated the extended consequences of genetic variation in animals. Accordingly, I examined the importance of genetically based variation among five populations of the ant-tended aphid Aphis asclepiadis for its interactions with both ants and predators. In a common environment, aphid source population accounted for 23 and 17% of the variation in the occurrence of ants and predators, respectively. Ant exclusion increased predator abundance, accounting for 25% of variation, but there was no detectable influence of ants on aphid abundance. There was an indication that aphid source populations varied in honeydew quality, but this was uncorrelated with rates of ant attendance. This study provides the first evidence for genetic variation in aphids for attractiveness to ants, and underscores the important link between intra-specific genetic variation in aphids and the processes governing arthropod community structure.  相似文献   

14.
Aphis fabae (Homoptera: Aphididae) foundresses were shown to have a clustered distribution on leaves of their primary host, Euonymus europaeus. Two field experiments were carried out to determine the costs or benefits of this clustering behaviour to aphid clones. The first experiment, in spring 1996, excluded predators from colonies formed by single fundatrices or clusters of three. No density-dependent effects on colony growth were observed early in the season, but the total production of migrants per foundress was significantly lower for clustered foundresses. This demonstrated that there was no synergistic effect of group feeding on clonal performance. All colonies were initiated on randomly selected leaves and all grew successfully, therefore clustering was not due to a shortage of feeding sites. The second experiment, in spring 1997, tested whether natural enemies cause selection for selfish herding by the foundress generation. Colonies were initiated by one or three foundresses, but half were left unbagged. If natural enemy attack is a selective force inducing clustering behaviour in foundresses, the costs of clustering should have been reduced or negated in unbagged colonies. Colonies grown from clusters produced significantly fewer migrants per foundress, irrespective of bagging treatment. Other potential factors causing clustering behaviour are discussed. Received: 19 August 1998 / Accepted: 16 November 1998  相似文献   

15.
Ant‐hemipteran mutualisms are keystone interactions that can be variously affected by warming: these mutualisms can be strengthened or weakened, or the species can transition to new mutualist partners. We examined the effects of elevated temperatures on an ant‐aphid mutualism in the subalpine zone of the Rocky Mountains in Colorado, USA. In this system, inflorescences of the host plant, Ligusticum porteri Coult. & Rose (Apiaceae), are colonized by the ant‐tended aphid Aphis asclepiadis Fitch or less frequently by the non‐ant tended aphid Cavariella aegopodii (Scopoli) (both Hemiptera: Aphididae). Using an 8‐year observational study, we tested for two key mechanisms by which ant‐hemipteran mutualisms may be altered by climate change: shifts in species identity and phenological mismatch. Whereas the aphid species colonizing the host plant is not changing in response to year‐to‐year variation in temperature, we found evidence that a phenological mismatch between ants and aphids could occur. In warmer years, colonization of host plant inflorescences by ants is decreased, whereas for A. asclepiadis aphids, host plant colonization is mostly responsive to date of snowmelt. We also experimentally established A. asclepiadis colonies on replicate host plants at ambient and elevated temperatures. Ant abundance did not differ between aphid colonies at ambient vs. elevated temperatures, but ants were less likely to engage in tending behaviors on aphid colonies at elevated temperatures. Sugar composition of aphid honeydew was also altered by experimental warming. Despite reduced tending by ants, aphid colonies at elevated temperatures had fewer intraguild predators. Altogether, our results suggest that higher temperatures may disrupt this ant‐aphid mutualism through both phenological mismatch and by altering benefits exchanged in the interaction.  相似文献   

16.
Oviposition decisions made by members of a guild of natural enemies can have evolved to avoid intraguild predation, potentially avoiding the disruption of the extraguild prey control. We have studied the oviposition preference of the aphidophagous predator Episyrphus balteatus De Geer (Diptera: Syrphidae) within colonies of Myzus persicae Sulzer (Hemiptera: Aphididae) in the presence of two developmental stages of the aphid parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae). Results from a greenhouse choice experiment showed that E. balteatus females lay significantly fewer eggs in colonies with mummified aphids than in unparasitized colonies. Colonies of parasitized, but not yet mummified did not contain significantly fewer eggs than colonies with unparasitized aphids. In three no-choice experiments, we assessed stimuli coming from aphid honeydew, from the aphids themselves and also from extracts of the aphid bodies, and all of these stimuli mediate the discrimination of mummified aphids from healthy aphids. To a lesser extent these stimuli also contribute to the discrimination against aphids that are parasitized but not yet mummified. These results suggest that the effects of these two species could be complementary for the control of M. persicae, since the species that acts as an intraguild predator, E. balteatus, avoids ovipositing on aphid colonies parasitized by the intraguild prey, A. colemani.  相似文献   

17.
Jason P. Harmon  D. A. Andow 《Oikos》2007,116(6):1030-1036
Density-dependent mutualisms have been well documented, but the behavioral mechanisms that can produce such interactions are not as well understood. We investigated interactions between predatory ladybirds and the ant Lasius neoniger, which engages in a facultative association with the aphid Aphis fabae . We found that ants disrupted predator aggregation and deterred foraging, but that this effect varied with aphid density. In the field, smaller aphid colonies had higher numbers of ants per aphid (higher relative ant density), whereas plants with larger aphid colonies had lower relative ant density. Ants deterred ladybird foraging when relative ant density was high, but when relative ant density was low, ladybirds aggregated to aphids and foraged more successfully. This difference in ladybird foraging success appeared to be driven by variation in the ants' distribution on the plant and the ladybirds' reaction to ants. When relative ant density was high, ants moved around the perimeter of the aphid colonies, which resulted in faster detection of predators and a greater likelihood of ladybirds leaving. However, when relative ant density was low, ants moved only in the midst of the aphid colonies and rarely around the perimeter, which allowed predators to approach the aphid colony from the perimeter and feed without detection. Such predators were less likely to leave the aphid colony when subsequently detected by ants. We suggest that differences in relative ant numbers, ant distribution, and predator reaction to detection by ants could lead to complex population-level consequences including density-dependent mutualisms and the possibility that predators act as prudent predators.  相似文献   

18.
Workers of the ant species Lasius niger showed marked preferences when collecting honeydew from three aphid species living on tansy, Tanacetum vulgare . Colonies of Metopeurum fuscoviride were visited most intensively, Brachycaudus cardui had an intermediate position, and colonies of Aphis fabae were visited least intensively. L. niger abandoned colonies of the less preferred species as soon as colonies of a higher-ranked species were available on neighbouring tansy plants. As a consequence, the abandoned colonies suffered a higher predation by aphid predators and persisted for a shorter time than attended colonies of the same species. If two aphid species were present in a mixed colony on the same shoot, the preferred species increased in numbers, while the less preferred species decreased due to predation by L. niger . The results show that there is a competition for the mutualistic services of ants between aphid species exploiting the same resource. The outcome of this competition depends on the aphid's selective attractiveness to ants, which corresponded with already reported differences in honeydew quality and quantity.  相似文献   

19.
We describe the behavioral interactions between honeydew-collecting workers of the ants Lasius nigerand Myrmica ruginodisand females of three species of aphidiid wasps (Lysiphlebus cardui, Lysiphlebus testaceipes, Trioxys angelicae)foraging for their aphid host, Aphis fabaessp. cirsiiacanthoidis,on thistles. Using field and laboratory experiments, we show that the ant-parasitoid interactions are species specific. Workers of both ant species generally attacked and killed females of T. angelicae,but they ignored those of L. cardui.This pattern was not altered when we anesthetized the wasps slightly with carbon dioxide to reduce their mobility. Prior contacts between L. carduiand either conspecific L. nigerfrom a different nest or workers of a different ant species (M. ruginodis)did not influence L. niger'snonaggressive behavior. The number of aphids parasitized by L. testaceipeswas significantly reduced in aphid colonies attended by L. niger,although this parasitoid was rarely attacked by ants. In encounters between these species of ants and wasps, ant aggression is consistent with differences in wasp behavior. We suggest that, in addition, chemical cues located in the cuticula may enable L. carduito avoid detection by honeydew-collecting ants.  相似文献   

20.
Although species interactions are often proposed to be stronger at lower latitudes and elevations, few studies have evaluated the mechanisms driving such patterns. In this study, we assessed whether, and by which mechanisms, abiotic changes associated with elevation altered the outcome of an ant–aphid protection mutualism. To do so, we characterized the multi‐trophic interactions among the ant Formica podzolica, the aphid Aphis varians, and aphid natural enemies occurring on the plant Chamerion angustifolium within replicate high and low elevation valleys. Low (versus high) elevation sites had longer summers (snowmelt 13 days earlier) and were on average 1.1°C warmer and 41% drier throughout the year. At low elevations, individual ant colonies consumed approximately double the volume of carbohydrate baits, likely due to a higher foraging tempo, and possibly due to a greater demand for sugar‐ versus protein‐rich resources (as indicated by stable isotope analysis). Wild aphid colonies at low elevations were visited by 1.4‐fold more natural enemies (controlling for variation in aphid abundance), while experimental aphid colonies on potted plants were tended 52% more frequently by ants. As a result, ants increased aphid colony survival by 66% at low elevations but had no detectable effect at high elevations; at low (versus high) elevations aphid colonies without ants had lower survival, demonstrating stronger predator effects, while aphid colonies with ants had higher survival, demonstrating even stronger ant benefits. Analyses for the effects of mean summer temperature yielded qualitatively identical results to those based on elevation. Collectively, these findings support predictions for a greater sensitivity of higher trophic levels to warming and demonstrate how species interactions can vary across environmental gradients due to simultaneous changes in species traits and abundances across multiple trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号