首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adhesion molecule, CD44, interacts with ankyrin within its cytoplasmic domain and binds to hyaluronic acid (HA) at its extracellular domain. In this study, we focused on the functional domain in ankyrin (in particular, the ankyrin repeat domain [ARD]) responsible for CD44 binding and its role in regulating HA-mediated ovarian tumor cell function. Using recombinant fragments of ankyrin (e.g., ARD and subdomain 1 [S1, aa1-aa217], subdomain 2 [S2, aa218-aa381], subdomain 3 [S3, aa382-aa612], and subdomain 4 [S4, aa613-aa834]) and in vitro binding assays, we determined that the S2 but not S1, S3, or S4 of ARD is the primary ankyrin binding region for CD44. Microinjection of antiglutathione S-transferase (GST)-tagged S2 or GST-tagged ARD fusion protein into CD44-positive ovarian tumor cells (e.g., SKOV3 cell line) promotes ankyrin association with CD44 in plaque-like structures and membrane projections. Additionally, we demonstrated that transfection of SKOV3 cells with S2cDNA or ARD cDNA results in an upregulation of HA-mediated tumor cell migration. Taken together, we believe that the S2 of the ARD plays a pivotal role in the direct binding to CD44 and promotes the cytoskeleton activation required for HA-mediated function such as ovarian tumor cell migration.  相似文献   

2.
We used complementary biochemical and immunological techniques to establish that an endothelial cell transmembrane glycoprotein, GP116, is a CD44-like molecule and binds directly both to extracellular matrix components (e.g., hyaluronic acid) and to ankyrin. The specific characteristics of GP116 are as follows: (i) GP116 can be surface labeled with Na 125I and contains a wheat germ agglutinin-binding site(s), indicating that it has an extracellular domain; (ii) GP116 displays immunological cross-reactivity with a panel of CD44 antibodies, shares some peptide similarity with CD44, and has a similar 52-kDa precursor molecule, indicating that it is a CD44-like molecule; (iii) GP116 displays specific hyaluronic acid-binding properties, indicating that it is a hyaluronic acid receptor; (iv) GP116 can be phosphorylated by endogenous protein kinase C activated by 12-O-tetradecanoylphorbol-13-acetate and by exogenously added protein kinase C; and (v) GP116 and a 20-kDa tryptic polypeptide fragment of GP116 from the intracellular domain are capable of binding the membrane-cytoskeleton linker molecule, ankyrin. Furthermore, phosphorylation of GP116 by protein kinase C significantly enhances GP116 binding to ankyrin. Together, these findings strongly suggest that phosphorylation of the transmembrane glycoprotein GP116 (a CD44-like molecule) by protein kinase C is required for effective GP116-ankyrin interaction during endothelial cell adhesion events.  相似文献   

3.
Mapping the ankyrin-binding site of the human erythrocyte anion exchanger   总被引:9,自引:0,他引:9  
This report describes initial efforts to map the ankyrin-binding site of the cytoplasmic domain of the human erythrocyte anion exchanger. The conclusions are that this site is likely to involve a fairly extended sequence in the midregion of the cytoplasmic domain and requires interactions that are not provided by isolated peptides. The region of the sequence involving residues 174-186 is likely to participate in the ankyrin-binding site based on several experiments. Limited tryptic cleavage in the midregion of the cytoplasmic domain (residues 174 and/or 181) nearly abolished the ability of the cytoplasmic domain to inhibit binding of ankyrin to the anion exchanger. Ankyrin protected the cytoplasmic domain from tryptic digestion. Finally, peptide-specific antibodies against the sequence encompassing the site(s) of tryptic cleavage (residues 174-186) blocked binding of ankyrin to the anion exchanger. However, the sequence comprising the tryptic site is not sufficient for high affinity binding of ankyrin. A 39-amino acid peptide (residues 161-200) that includes the tryptic cleavage site(s) was inactive in inhibiting binding of ankyrin to the anion exchanger. Further evidence for a complex ankyrin-binding site is that peptide-specific antibodies against two different, noncontiguous regions (residues 118-162 and 174-186) both inhibited binding of ankyrin to the anion exchanger and were only 10-20% as effective as antibody against the entire cytoplasmic domain. Finally, the ankyrin-binding site of the anion exchanger did not renature following sodium dodecyl sulfate electrophoresis and transfer to nitrocellulose paper even though spectrin did recover ability to bind ankyrin under the same conditions. Thus, the ankyrin-binding site is not defined by a short continuous sequence. A simple consensus sequence for ankyrin-binding regions in other proteins is not likely.  相似文献   

4.
In this study, we have investigated the biosynthesis and processing of GP85 (Pgp-1/CD44), a lymphoma transmembrane glycoprotein known to contain ankyrin-binding site(s). Using a standard pulse-chase protocol, we have detected a 52-kDa polypeptide precursor (p52) within the first 5 min of pulse labeling which contains a high mannose-type N-linked oligosaccharide chains. The conversion of p52 to GP85 requires further glycosylation (both complex type N-linked and O-linked) which takes place in the Golgi complex within 10-20 min after p52 is synthesized. GP85 is then incorporated into the plasma membrane where its turnover rate is relatively slow, a t1/2 of approximately 8 h. Following tunicamycin treatment, we have detected two other precursor proteins: p42 which is unglycosylated and p58 which is O-glycosylated. p42 appears to be an immediate precursor of p52 because p52 is converted to p42 upon deglycosylation. Therefore, the biosynthesis of GP85 appears to occur in the following sequence: p42 in equilibrium to p52 in equilibrium to GP85. Further analysis reveals that all of the GP85 precursors (i.e. p42, p52, and p58) contain ankyrin-binding site(s). Chemical composition analysis of GP85 indicates that this molecule contains approximately 3 N-linked and 4-5 O-linked oligosaccharide chains. Although neither N-glycosylation nor O-glycosylation appears to play an important role in the formation of ankyrin-binding site(s), O-glycosylation (and to a lesser extent N-glycosylation) of GP85 is required for T-lymphoma cell surface interaction with both collagen and hyaluronic acid. These findings suggest that GP85 (Pgp-1/CD44) and its biosynthetic precursors play a pivotal role in regulating adhesion functions such as lymphocyte homing and binding to the extracellular matrix.  相似文献   

5.
In this study, we have used photoaffinity labeling by [32P]azido-GTP as well as [32P]ADP-ribosylation by pertussis toxin (PT) and cholera toxin (CT) to identify GTP-binding proteins associated with mouse T-lymphoma plasma membranes. Our results indicate that GP85 (CD44) can be photoaffinity labeled by [32P] azido-GTP and [32P]ADP-ribosylated by both PT and CT. Using purified GP85 (CD44) obtained by Triton X-100 extraction, wheat germ agglutinin-Sepharose, and anti-GP85 (CD44) antibody affinity chromatographies, we have further characterized GP85 (CD44) as a GTP-binding protein. GP85 (CD44) is found to bind guanosine 5'-3-O-(thio)triphosphate (GTP gamma S) in a time- and dose-dependent manner with a dissociation constant of 0.83 nM. Importantly, GP85 (CD44) appears to display a GTPase activity which hydrolyzes [gamma-32P]GTP at a rate of 0.011 mol of Pi released/mol of GP85 (CD44)/min. This GTPase activity can be readily inhibited by PT- or CT-mediated ribosylation of GP85 (CD44). Most interestingly, GTP binding significantly enhances the interaction of purified GP85 (CD44) with ankyrin, whereas ADP-ribosylation of GP85 (CD44) by PT or CT inhibits the GTP-induced increase in ankyrin binding to GP85 (CD44). In addition to GP85 (CD44) being the first reported transmembrane GTP-binding protein, these results suggest that GTP plays an important role in promoting the interaction between GP85 (CD44) and its underlying membrane cytoskeleton through ankyrin.  相似文献   

6.
In this study we have used complementary biochemical and immunological techniques to establish that the lymphoma GP85 membrane glycoprotein is a transmembrane protein with a cytoplasmic domain that binds directly to ankyrin, a molecule known to link the membrane to the cytoskeleton. The evidence supporting our conclusion that the GP85 is a transmembrane glycoprotein is as follows: (a) GP85 can be surface-labeled with Na 125I and contains wheat germ agglutinin-binding sites, indicating that it has an extracellular domain; (b) GP85 can be phosphorylated by intracellular kinases, indicating that it has an intracellular domain; and (c) GP85 can be successfully incorporated into phospholipid vesicles, indicating the existence of a hydrophobic domain in the molecule. Further studies show that GP85 displays immunological cross-reactivity with the lymphocyte Pgp-1 (differentiation-specific) membrane glycoprotein, and with the erythrocyte anion transport membrane protein, band 3. Immunocytochemical studies indicate that an ankyrin-like protein accumulates underneath the lymphoma GP85 cap structure, suggesting an association of the ankyrin-like protein and GP85. This relationship has been further confirmed by the following results of binding and reconstitution experiments: (a) purified GP85 binds directly to an ankyrin-Sepharose column; (b) purified GP85 inserts into phospholipid vesicles in both the normal (right side out) and reversed (inside out) orientation (and with only the reversed configuration permits binding of ankyrin to GP85); and (c) cleavage of GP85 with trypsin yields a 40-kD peptide fragment that is part of the cytoplasmic domain and contains the ankyrin binding site(s). Based on these findings, we suggest that the lymphoma GP85 transmembrane glycoprotein contains a cytoplasmic domain that is directly involved in linking ankyrin to the cytoskeleton. This transmembrane linkage may play a pivotal role in receptor capping and cell activation in lymphocytes.  相似文献   

7.
A major class of ankyrin-binding glycoproteins have been identified in adult rat brain of 186, 155, and 140 kD that are alternatively spliced products of the same pre-mRNA. Characterization of cDNAs demonstrated that ankyrin-binding glycoproteins (ABGPs) share 72% amino acid sequence identity with chicken neurofascin, a membrane-spanning neural cell adhesion molecule in the Ig super-family expressed in embryonic brain. ABGP polypeptides have the following features consistent with a role as ankyrin-binding proteins in vitro and in vivo: (a) ABGPs and ankyrin associate as pure proteins in a 1:1 molar stoichiometry; (b) the ankyrin-binding site is located in the COOH-terminal 21 kD of ABGP186 which contains the predicted cytoplasmic domain; (c) ABGP186 is expressed at approximately the same levels as ankyrin (15 pmoles/milligram of membrane protein); and (d) ABGP polypeptides are co- expressed with the adult form of ankyrinB late in postnatal development and are colocalized with ankyrinB by immunofluorescence. Similarity in amino acid sequence and conservation of sites of alternative splicing indicate that genes encoding ABGPs and neurofascin share a common ancestor. However, the major differences in developmental expression reported for neurofascin in embryos versus the late postnatal expression of ABGPs suggest that ABGPs and neurofascin represent products of gene duplication events that have subsequently evolved in parallel with distinct roles. The predicted cytoplasmic domains of rat ABGPs and chicken neurofascin are nearly identical to each other and closely related to a group of nervous system cell adhesion molecules with variable extracellular domains, which includes L1, Nr-CAM, and Ng- CAM of vertebrates, and neuroglian of Drosophila. The ankyrin-binding site of rat ABGPs is localized to the C-terminal 200 residues which encompass the cytoplasmic domain, suggesting the hypothesis that ability to associate with ankyrin may be a shared feature of neurofascin and related nervous system cell adhesion molecules.  相似文献   

8.
Interactions of CD44 on neutrophils with E-selectin on activated endothelial cells mediate rolling under flow, a prerequisite for neutrophil arrest and migration into perivascular tissues. How CD44 functions as a rolling ligand despite its weak affinity for E-selectin is unknown. We examined the nanometer scale organization of CD44 on intact cells. CD44 on leukocytes and transfected K562 cells was cross-linked within a 1.14-nm spacer. Depolymerizing actin with latrunculin B reduced cross-linking. Fluorescence resonance energy transfer (FRET) revealed tight co-clustering between CD44 fused to yellow fluorescent protein (YFP) and CD44 fused to cyan fluorescent protein on K562 cells. Latrunculin B reduced FRET-reported co-clustering. Number and brightness analysis confirmed actin-dependent CD44-YFP clusters on living cells. CD44 lacking binding sites for ankyrin and for ezrin/radixin/moesin (ERM) proteins on its cytoplasmic domain (ΔANKΔERM) did not cluster. Unexpectedly, CD44 lacking only the ankyrin-binding site (ΔANK) formed larger but looser clusters. Fluorescence recovery after photobleaching demonstrated increased CD44 mobility by latrunculin B treatment or by deleting the cytoplasmic domain. ΔANKΔERM mobility increased only modestly, suggesting that the cytoplasmic domain engages the cytoskeleton by an additional mechanism. Ex vivo differentiated CD44-deficient neutrophils expressing exogenous CD44 rolled on E-selectin and activated Src kinases after binding anti-CD44 antibody. In contrast, differentiated neutrophils expressing ΔANK had impaired rolling and kinase activation. These data demonstrate that spectrin and actin networks regulate CD44 clustering and suggest that ankyrin enhances CD44-mediated neutrophil rolling and signaling.  相似文献   

9.
Zhou S  Opperman K  Wang X  Chen L 《Genetics》2008,180(3):1429-1443
The L1 family of single-pass transmembrane cell adhesion molecules (L1CAMs) is conserved from Caenorhabditis elegans and Drosophila to vertebrates and is required for axon guidance, neurite outgrowth, and maintenance of neuronal positions. The extracellular region of L1CAMs mediates cell adhesion via interactions with diverse cell-surface and extracellular matrix proteins. In contrast, less is known regarding the function of the intracellular domains in the L1CAM cytoplasmic tail. Previously, we identified a role of the C. elegans L1CAM homolog, SAX-7, in maintaining neuronal and axonal positioning. Here, we demonstrate that this function is dependent on three conserved motifs that reside in the SAX-7 cytoplasmic tail: (1) the FERM-binding motif, (2) the ankyrin-binding domain, and (3) the PDZ-binding motif. Furthermore, we provide molecular and genetic evidence that UNC-44 ankyrin and STN-2 γ-syntrophin bind SAX-7 via the respective ankyrin-binding and PDZ-binding motifs to regulate SAX-7 function in maintaining neuronal positioning.  相似文献   

10.
11.
The cytoplasmic domain of erythrocyte membrane band 3 (cdb3) serves as a center of membrane organization, interacting with such proteins as ankyrin, protein 4.1, protein 4.2, hemoglobin, several glycolytic enzymes, a tyrosine phosphatase, and a tyrosine kinase, p72(syk). The crystallographic structure of the cdb3 dimer has revealed that residues 175-185 assume a beta-hairpin loop similar to a putative ankyrin-binding motif at the cytoplasmic surface of the Na(+)/K(+)-ATPase. To test whether this hairpin loop constitutes an ankyrin-binding site on cdb3, we have deleted amino acids 175-185 and substituted the 11-residue loop with a Gly-Gly dipeptide that bridges the deletion without introducing strain into the structure. Although the deletion mutant undergoes the same native conformational changes exhibited by wild type cdb3 and binds other peripheral proteins normally, the mutant exhibits no affinity for ankyrin. This suggests that the exposed beta-hairpin turn indeed constitutes a major ankyrin-binding site on cdb3. Other biochemical studies suggest that ankyrin also docks at the NH(2) terminus of band 3. Thus, antibodies to the NH(2) terminus of cdb3 block ankyrin binding to the cdb3, and ankyrin binding to cdb3 prevents p72(syk) phosphorylation of cdb3 at its NH(2) terminus (predominantly at Tyr-8). However, a truncation mutant of cdb3 lacking the NH(2)-terminal 50 residues displays the same binding affinity as wild type cdb3. These data thus suggest that the NH(2) terminus of cdb3 is proximal to but not required for the cdb3-ankyrin interaction.  相似文献   

12.
It is known that erythroid and non-erythroid spectrins binding of vesicles and monolayers containing PE proved sensitive to inhibition by red blood cell ankyrin. We now show that the bacterially-expressed recombinant peptides representing betaII(brain)-spectrin's ankyrin-binding domain and its truncated mutants showed lipid-binding activity, although only those containing a full-length amino terminal fragment showed high to moderate affinity towards phospholipid mono- and bilayers and a substantial sensitivity of this binding to inhibition by ankyrin. These results are in accordance with our published data on betaI-spectrin's ankyrin-binding domain [Hryniewicz-Jankowska A, et al. Mapping of ankyrin-sensitive, PE/PC mono- and bilayer binding site in erythroid beta-spectrin. Biochem J 2004;382:677-85]. Moreover, we tested also the effect of transient transfection of living cells of several cell-lines with vectors coding for GFP-conjugates including betaII and also betaI full-length ankyrin-binding domain and their truncated fragments on the membrane skeleton organization. The transfection with constructs encoding full-length ankyrin-binding domain of betaII and betaI spectrin resulted in increased aggregation of membrane skeleton and its punctate appearance in contrast to near normal appearance of membrane skeleton of cells transiently transfected with GFP control or construct encoding ankyrin-binding domain truncated at their N-terminal region. Our results therefore indicate the importance of N-terminal region for lipid-binding activity of the beta-spectrin ankyrin-binding domain and its substantial role in maintaining the spectrin-based skeleton distribution.  相似文献   

13.
Defects in ankyrin underlie many hereditary disorders involving the mislocalization of membrane proteins. Such phenotypes are usually attributed to ankyrin's role in stabilizing a plasma membrane scaffold, but this assumption may not be accurate. We found in Madin-Darby canine kidney cells and in other cultured cells that the 25-residue ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase facilitates the entry of alpha(1),beta(1)-Na(+)-K(+)-ATPase into the secretory pathway and that replacement of the cytoplasmic domain of vesicular stomatitis virus G protein (VSV-G) with this ankyrin-binding sequence bestows ankyrin dependency on the endoplasmic reticulum (ER) to Golgi trafficking of VSV-G. Expression of the ankyrin-binding sequence of alpha(1)-Na(+)-K(+)-ATPase alone as a soluble cytosolic peptide acts in trans to selectively block ER to Golgi transport of both wild-type alpha(1)-Na(+)-K(+)-ATPase and a VSV-G fusion protein that includes the ankyrin-binding sequence, whereas the trafficking of other proteins remains unaffected. Similar phenotypes are also generated by small hairpin RNA-mediated knockdown of ankyrin R or the depletion of ankyrin in semipermeabilized cells. These data indicate that the adapter protein ankyrin acts not only at the plasma membrane but also early in the secretory pathway to facilitate the intracellular trafficking of alpha(1)-Na(+)-K(+)-ATPase and presumably other selected proteins. This novel ankyrin-dependent assembly pathway suggests a mechanism whereby hereditary disorders of ankyrin may be manifested as diseases of membrane protein ER retention or mislocalization.  相似文献   

14.
15.
In this study, we have showed that aortic endothelial cells (GM7372A cell line) express CD44v10 [a hyaluronan (HA) receptor], which is significantly enriched in cholesterol-containing lipid rafts (characterized as caveolin-rich plasma membrane microdomains). HA binding to CD44v10 promotes recruitment of the cytoskeletal protein, ankyrin and inositol 1,4,5-triphosphate (IP3) receptor into cholesterol-containing lipid rafts. The ankyrin repeat domain (ARD) of ankyrin is responsible for binding IP3 receptor to CD44v10 at lipid rafts and subsequently triggering HA/CD44v10-mediated intracellular calcium (Ca2+) mobilization leading to a variety of endothelial cell functions such as nitric oxide (NO) production, cell adhesion and proliferation. Further analyses indicate (i) disruption of lipid rafts by depleting cholesterol from the membranes of GM7372A cells (using methyl-beta-cyclodextrin treatment) or (ii) interference of endogenous ankyrin binding to CD44 and IP3 receptor using overexpression of ARD fragments (by transfecting cells with ARDcDNA) not only abolishes ankyrin/IP3 receptor accumulation into CD44v10/cholesterol-containing lipid rafts, but also blocks HA-mediated Ca2+ signaling and endothelial cell functions. Taken together, our findings suggest that CD44v10 interaction with ankyrin and IP3 receptor in cholesterol-containing lipid rafts plays an important role in regulating HA-mediated Ca2+ signaling and endothelial cell functions such as NO production, cell adhesion and proliferation.  相似文献   

16.
The hyaluronan receptor CD44 undergoes sequential proteolytic cleavage at the cell surface. The initial cleavage of the CD44 extracellular domain is followed by a second intramembranous cleavage of the residual CD44 fragment, liberating the C-terminal cytoplasmic tail of CD44. In this study conditions that promote CD44 cleavage resulted in a diminished capacity to assemble and retain pericellular matrices even though sufficient non-degraded full-length CD44 remained. Using stable and transient overexpression of the cytoplasmic domain of CD44, we determined that the intracellular domain interfered with anchoring of the full-length CD44 to the cytoskeleton and disrupted the ability of the cells to bind hyaluronan and assemble a pericellular matrix. Co-immunoprecipitation assays were used to determine whether the mechanism of this interference was due to competition with actin adaptor proteins. CD44 of control chondrocytes was found to interact and co-immunoprecipitate with both the 65- and 130-kDa isoforms of ankyrin-3. Moreover, this interaction with ankyrin-3 proteins was diminished in cells overexpressing the CD44 intracellular domain. Mutating the putative ankyrin binding site of the transiently transfected CD44 intracellular domain diminished the inhibitory effects of this protein on matrix retention. Although CD44 in other cells types has been shown to interact with members of the ezrin/radixin/moesin (ERM) family of adaptor proteins, only modest interactions between CD44 and moesin could be demonstrated in chondrocytes. The data suggest that release of the CD44 intracellular domain into the cytoplasm of cells such as chondrocytes exerts a competitive or dominant-negative effect on the function of full-length CD44.  相似文献   

17.
CD44 is an important adhesion molecule that functions as the major hyaluronan receptor which mediates cell adhesion and migration in a variety of physiological and pathological processes. Although full activity of CD44 requires binding to ERM (ezrin/radixin/moesin) proteins, the CD44 cytoplasmic region, consisting of 72 amino acid residues, lacks the Motif-1 consensus sequence for ERM binding found in intercellular adhesion molecule (ICAM)-2 and other adhesion molecules of the immunoglobulin superfamily. Ultracentrifugation sedimentation studies and circular dichroism measurements revealed an extended monomeric form of the cytoplasmic peptide in solution. The crystal structure of the radixin FERM domain complexed with a CD44 cytoplasmic peptide reveals that the KKKLVIN sequence of the peptide forms a beta strand followed by a short loop structure that binds subdomain C of the FERM domain. Like Motif-1 binding, the CD44 beta strand binds the shallow groove between strand beta5C and helix alpha1C and augments the beta sheet beta5C-beta7C from subdomain C. Two hydrophobic CD44 residues, Leu and Ile, are docked into a hydrophobic pocket with the formation of hydrogen bonds between Asn of the CD44 short loop and loop beta4C-beta5C from subdomain C. This binding mode resembles that of NEP (neutral endopeptidase 24.11) rather than ICAM-2. Our results reveal a characteristic versatility of peptide recognition by the FERM domains from ERM proteins, suggest a possible mechanism by which the CD44 tail is released from the cytoskeleton for nuclear translocation by regulated intramembrane proteolysis, and provide a structural basis for Smad1 interactions with activated CD44 bound to ERM protein.  相似文献   

18.
The predominant attachment site of the spectrin-based cytoskeleton to the erythrocyte membrane occurs via the interaction of ankyrin with the cytoplasmic domain of band 3 (cdb3). In order to further characterize this interaction, we have conducted experiments to localize the ankyrin-binding site on cdb3. Four monoclonal and three antipeptide polyclonal antibodies were raised against cdb3 and used in competition studies to identify regions of close association of cdb3 with ankyrin. Antibodies to regions of cdb3 near the cytoplasmic domain-membrane spanning domain junction had no effect on 125I-ankyrin binding. Likewise, an antibody to a highly conserved region between residues 142 and 154 did not inhibit ankyrin binding. However, antibodies at or near the cysteine 201-317 cluster and the proposed proline-rich hinge in the center of cdb3 were potent inhibitors of ankyrin association, as were antibodies to the acidic NH2 terminus. Additional evidence for interaction of ankyrin with the NH2-terminal region of cdb3 was obtained by demonstrating the ability of ankyrin to inhibit tyrosine phosphorylation of cdb3 at its NH2 terminus by a purified calf thymus tyrosine kinase. These studies reveal two regions of cdb3, distant in primary sequence, which interact with ankyrin. A specific conformation of cdb3 may be required to permit these regions to simultaneously associate with ankyrin and allow binding to occur.  相似文献   

19.
《The Journal of cell biology》1996,135(4):1139-1150
Cell contact with the extracellular matrix component hyaluronic acid (HA) plays an important role in many developmental, physiological, and pathological processes, although the regulation of this contact is poorly understood. CD44 proteins carry an amino acid motif that mediates affinity to HA. Artificial clustering of the smallest 85-kD isoform of CD44 (CD44s) has previously been shown to promote binding of the protein to soluble HA (Lesley, J., R. Hyman, and P.W. Kincade. 1993. Adv. Immunol. 54:271-335; Persche, A., J. Lesley, N. English, I. Trowbridge, and R. Hyman. 1995. Eur. J. Immunol. 25:495-501). Here we show that in rat pancreatic carcinoma cells, splice variants of CD44 (CD44v), but not CD44s, form molecular aggregates in the plasma membrane. We demonstrate that reduction-sensitive dimerization of CD44v occurs, and also that larger aggregations of the protein can be stabilized by chemical cross-linking. Different CD44v proteins present on the same cell exclusively form homoaggregates. Molecular clustering does not require an intact cytoplasmic domain of the protein. The ability of cells to bind to soluble HA is upregulated more than one magnitude by the ectopic expression of CD44v4-v7, but only when the CD44v4-v7 protein forms intermolecular aggregates. Tunicamycin treatment inhibits HA binding by CD44v and at the same time destroys oligomerization. We propose that the regulation of clustering of CD44, mediated by factors including the presence of variant exons and glycosylation, allows cells in turn to regulate their HA binding properties.  相似文献   

20.
Recent biochemical and sequence data suggest a possible relationship between Pgp-1 (identical to CD44/Hermes 1/p85) and a hyaluronic acid-binding function. Here, we have studied the hyaluronic acid-binding activity of a series of murine hematopoietic cell lines using several assays: cell aggregation by hyaluronic acid, binding of fluorescein-conjugated hyaluronic acid, and cell adhesion to hyaluronic acid-coated dishes. Certain Pgp-1-positive T and B cell lines show hyaluronic acid binding that is highly specific and is not competed for by other glycosaminoglycans. Monoclonal antibodies against Pgp-1, but not antibodies against other major cell surface glycoproteins, inhibited hyaluronic acid-induced cell aggregation and cell adhesion to hyaluronic acid-coated dishes. Additionally, some anti-Pgp-1 antibodies inhibited binding of fluorescein-hyaluronic acid to hyaluronic acid-binding lines. We found no Pgp-1-negative lines that bound, but many Pgp-1-positive cell lines did not bind hyaluronic acid. Two Pgp-1-positive thymomas that did not bind hyaluronic acid were induced by phorbol ester to bind hyaluronic acid with the same specificity as other hyaluronic acid-binding lines. Normal hematopoietic cells, including those which express high levels of Pgp-1, such as bone marrow myeloid cells and splenic lymphocytes, showed no detectable hyaluronic acid-binding activity. We discuss several models that might account for these observations: (1) the hyaluronic acid receptor is Pgp-1, but it normally exists in an inactive state; (2) hyaluronic acid receptors are a subset of a family of molecules recognized by anti-Pgp-1 antibodies; (3) the hyaluronic acid receptor is not Pgp-1, but is closely associated with Pgp-1 on the surface of cells which express hyaluronic acid-binding activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号