首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Avermectin is an important macrocyclic polyketide produced by Streptomyces avermitilis and widely used as an anthelmintic agent in the medical, veterinary, and agricultural fields. The avermectin biosynthetic gene cluster contains aveR, which belongs to the LAL-family of regulatory genes. In this study, aveR was inactivated by gene replacement in the chromosome of S. avermitilis, resulting in the complete loss of avermectin production. The aveR mutant was unable to convert an avermectin intermediate to any avermectin derivatives, and complementation by intact aveR and its proper upstream region restored avermectin production in the mutant, suggesting that AveR is a positive regulator controlling the expression of both polyketide biosynthetic genes and postpolyketide modification genes in avermectin biosynthesis. Despite the general concept that an increased amount of a positive pathway-specific regulator leads to higher production, a higher amount of aveR resulted in complete loss of avermectin, indicating that there is a maximum threshold concentration of aveR for the production of avermectin.  相似文献   

2.
Ribosome recycling factor (RRF), encoded by frr gene, is involved in the release of ribosomes from the translational post-termination complex for a new round of initiation. In this study, the frr gene with either its own promoter or with ermE*p was cloned into a multi-copy vector, pKC1139, and a single-site integrative vector, pSET152, respectively. The resulting plasmids were transformed into Streptomyces avermitilis wild-type strain ATCC31267, avermectin high-producing mutant strain 76-02-e, and the engineered strain GB-165 that produces only avermectin B. The results showed that overexpression of frr increased avermectin yield (by 3- to 3.7-fold in the wild-type strain) and revealed an frr gene “copy number effect”; i.e., multiple copies of frr had a greater promoting effect on avermectin production than a single copy in each of the three transformed S. avermitilis strains. Comparison of the growth and expression of the ave genes in an frr-overexpressing strain and wild-type ATCC31267 indicated that frr overexpression promoted cell growth as well as the expression of ave genes (including pathway-specific positive regulatory gene aveR for avermectin biosynthesis and ave structural genes), leading in turn to avermectin overproduction. These findings provide an effective approach for the improvement of antibiotic production in Streptomyces.  相似文献   

3.
4.
5.
6.
7.
Nikkomycins and gougerotin are peptidyl nucleoside antibiotics with broad biological activities. The nikkomycin biosynthetic gene cluster comprises one pathway-specific regulatory gene (sanG) and 21 structural genes, whereas the gene cluster for gougerotin biosynthesis includes one putative regulatory gene, one major facilitator superfamily transporter gene, and 13 structural genes. In the present study, we introduced sanG driven by six different promoters into Streptomyces ansochromogenes TH322. Nikkomycin production was increased significantly with the highest increase in engineered strain harboring hrdB promoter-driven sanG. In the meantime, we replaced the native promoter of key structural genes in the gougerotin (gou) gene cluster with the hrdB promoters. The heterologous producer Streptomyces coelicolor M1146 harboring the modified gene cluster produced gougerotin up to 10-fold more than strains carrying the unmodified cluster. Therefore, genetic manipulations of genes involved in antibiotics biosynthesis with the constitutive hrdB promoter present a robust, easy-to-use system generally useful for the improvement of antibiotics production in Streptomyces.  相似文献   

8.
Jiang L  Liu Y  Wang P  Wen Y  Song Y  Chen Z  Li J 《Biotechnology letters》2011,33(10):1955-1961
The role of the extracytoplasmic function (ECF) σ factor Sig6 (SAV663) in avermectin production by Streptomyces avermitilis was investigated by gene-deletion, complementation and over-expression experiments. Inactivation of Sig6 had no major effect on growth, stress responses, or morphology. Avermectin yield was increased 2- to 2.7-fold (~680 μg/ml) relative to the wild-type strain by deletion of the sig6 gene, and was restored to the wild-type level by introduction of a single copy of sig6. Introduction of extra multi-copy or integrative sig6 vectors into the wild-type decreased avermectin yield by 56–63%. Taken together, these findings indicate that Sig6 plays a negative regulatory role in avermectin production in S. avermitilis. RT-PCR analysis demonstrated that this role of Sig6 is mediated by the pathway-specific activator gene aveR.  相似文献   

9.
10.
Rapamycin produced by Streptomyces hygroscopicus displays immunosuppressive, antifungal, anti-tumor, anti-inflammatory and neuro-regenerative properties. To enhance production of rapamycin, aveR, a stimulator in Streptomyces avermitilis, was integrated into the chromosome of S. hygroscopicus TYQ0915. This resulted in a 274.9% increase of rapamycin production in an exconjugant S. hygroscopicus AVH1124. Introduction of aveR acts pleiotropically by affecting growth and sporulation of S. hygroscopicus AVH1124, although aveR is verified to be a pathway-specific regulator in S. avermitilis. This study proved that introduction of a homologous regulatory gene from the same protein family enhanced rapamycin production.  相似文献   

11.
The expression of the structural genes nit-3 and nit-6, which encode the nitrate assimilatory enzymes nitrate reductase and nitrite reductase, respectively, is highly regulated by the global-acting NIT2 regulatory protein. These structural genes are also controlled by nitrogen catabolite repression and by specific induction via nitrate. A pathway-specific regulatory protein, NIT4, appears to mediate nitrate induction of nit-3 and of nit-6. The NIT4 protein, composed of 1090 amino acids, contains a putative GAL4-like Cys-6 zinc cluster DNA-binding motif, which is joined by a short segment to a stretch of amino acids that appear to constitute a coiled-coil dimerization domain. Chemical crosslinking studies demonstrated that a truncated form of NIT4 forms homodimers. Mobility-shift and DNA-footprinting experiments have identified two NIT4-binding sites of significantly different strengths in the promoter region of the nit-3 gene. The stronger binding site contains a symmetrical octameric sequence, TCCGCGGA, whereas the weaker site has a related sequence. Sequences related to this palindromic element can be found upstream of the nit-6 gene.  相似文献   

12.
13.
Carbon catabolite repression (CCR) is a common phenomenon in bacteria that modulates expression of genes involved in uptake of alternative carbon sources. In the filamentous streptomycetes, which produce half of all known antibiotics, the precise mechanism of CCR is yet unknown. We report here that the ROK-family regulator Rok7B7 pleiotropically controls xylose and glucose uptake, CCR, development, as well as production of the macrolide antibiotics avermectin and oligomycin A in Streptomyces avermitilis. Rok7B7 directly repressed structural genes for avermectin biosynthesis, whereas it activated olmRI, the cluster-situated activator gene for oligomycin A biosynthesis. Rok7B7 also directly repressed the xylose uptake operon xylFGH, whose expression was induced by xylose and repressed by glucose. Both xylose and glucose served as Rok7B7 ligands. rok7B7 deletion led to enhancement and reduction of avermectin and oligomycin A production, respectively, relieved CCR of xylFGH, and increased co-uptake efficiency of xylose and glucose. A consensus Rok7B7-binding site, 5′-TTKAMKHSTTSAV-3′, was identified within aveA1p, olmRIp, and xylFp, which allowed prediction of the Rok7B7 regulon and confirmation of 11 additional targets involved in development, secondary metabolism, glucose uptake, and primary metabolic processes. Our findings will facilitate methods for strain improvement, antibiotic overproduction, and co-uptake of xylose and glucose in Streptomyces species.  相似文献   

14.
A cluster encoding genes for the biosynthesis of meilingmycin, a macrolide antibiotic structurally similar to avermectin and milbemycin 11, was identified among seven uncharacterized polyketide synthase gene clusters isolated from Streptomyces nanchangensis NS3226 by hybridization with PCR products using primers derived from the sequences of aveE, aveF and a thioesterase domain of the avermectin biosynthetic gene cluster. Introduction of a 24.1-kb deletion by targeted gene replacement resulted in a loss of meilingmycin production, confirming that the gene cluster encodes biosynthesis of this important anthelminthic antibiotic compound. A sequenced 8.6-kb fragment had aveC and aveE homologues (meiC and meiE) linked together, as in the avermectin gene cluster, but the arrangement of aveF (meiF) and the thioesterase homologues differed. The results should pave the way to producing novel insecticidal compounds by generating hybrids between the two pathways.  相似文献   

15.
16.
17.
18.
19.
20.
We constructed four recombinant plasmids to enhance the production of clavulanic acid (CA) inStreptomyces clavuligerus NRRL3585: (1) plBRHL1, which includesccaR, a pathway-specific regulatory gene involved in cephamycin C and CA biosynthesis; (2) plBRHL2, containingclaR, again a regulatory gene, which controls the late steps of CA biosynthesis; (3) pGIBR containingafsR-p, a global regulatory gene fromStreptomyces peucetius, and (4) pKS, which harbors all of the genes (ccaR/claR/afsR-p). The plasmids were expressed inS. clavuligerus NRRL3585 along with theermE * promoter. All of them enhanced the production of CA; 2.5-fold overproduction for plBRHL1, 1.5-fold for plBRHL2, 1.6-fold for pGIBR, and 1.5-fold for pKS compared to the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号