首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A total of 445 actinomycete isolates were obtained from 16 medicinal plant rhizosphere soils. Morphological and chemotaxonomic studies indicated that 89% of the isolates belonged to the genus Streptomyces, 11% were non-Streptomycetes: Actinomadura sp., Microbispora sp., Micromonospora sp., Nocardia sp, Nonomurea sp. and three isolates were unclassified. The highest number and diversity of actinomycetes were isolated from Curcuma mangga rhizosphere soil. Twenty-three Streptomyces isolates showed activity against at least one of the five phytopathogenic fungi: Alternaria brassicicola, Collectotrichum gloeosporioides, Fusarium oxysporum, Penicillium digitatum and Sclerotium rolfsii. Thirty-six actinomycete isolates showed abilities to produce indole-3-acetic acid (IAA) and 75 isolates produced siderophores on chrome azurol S (CAS) agar. Streptomyces CMU-PA101 and Streptomyces CMU-SK126 had high ability to produced antifungal compounds, IAA and siderophores.  相似文献   

2.
An isolate of the actinomycete, Streptomyces sp. CMU-MH021 produced secondary metabolites that inhibited egg hatch and increased juvenile mortality of the root-knot nematode Meloidogyne incognita in vitro. 16S rDNA gene sequencing showed that the isolate sequence was 99% identical to Streptomyces roseoverticillatus. The culture filtrates form different culture media were tested for nematocidal activity. The maximal activity against M. incognita was obtained by using modified basal (MB) medium. The nematicidal assay-directed fractionation of the culture broth delivered fervenulin (1) and isocoumarin (2). Fervenulin, a low molecular weight compound, shows a broad range of biological activities. However, nematicidal activity of fervenulin was not previously reported. The nematicidal activity of fervenulin (1) was assessed using the broth microdilution technique. The lowest minimum inhibitory concentrations (MICs) of the compound against egg hatch of M. incognita was 30 μg/ml and juvenile mortality of M. incognita increasing was observed at 120 μg/ml. Moreover, at the concentration of 250 μg/ml fervenulin (1) showed killing effect on second-stage nematode juveniles of M. incognita up to 100% after incubation for 96 h. Isocoumarin (2), another bioactive compound produced by Streptomyces sp. CMU-MH021, showed weak nematicidal activity with M. incognita.  相似文献   

3.
Potential of non-symbiotic plant growth promoting rhizobacteria (PGPR) to influence the endogenous indole-3-acetic acid (IAA) content and growth of Vigna radiata (L.) was evaluated. The bacterial strains used belonged to Pseudomonas, Escherichia, Micrococcus and Staphylococcus genera. All strains were able to produce IAA (1.16–8.22 μg ml−1) in the presence of 1,000 μg ml−1 of l-tryptophan as revealed by gas chromatography and mass spectrometric (GC–MS) analysis. However, strains exhibited variable results for other growth promoting traits such as phosphate solubilization and siderophore or hydrogen cyanide production. Bacterial IAA production showed significant positive correlation with endogenous IAA content of roots (r = 0.969; P = 0.01) and leaves (r = 0.905; P = 0.01) under axenic conditions. Bacterization of V. radiata seeds significantly enhanced shoot length (up to 48.10%) and shoot fresh biomass (up to 43.80%) under fully axenic conditions. Bacterial strains applied under wire-house conditions also improved shoot length, number of pods, and grain weight up to 58, 65, and 17.15% respectively, over control. Hence, free living (non-symbiotic) PGPR have the ability to influence endogenous IAA content and growth of leguminous plants.  相似文献   

4.
A total of 10 endophytic actinomycete strains were successfully isolated from healthy shoots and roots of Aquilaria crassna Pierre ex Lec (eaglewood). Analysis of 16S rDNA sequencing of those isolates showed that they belong to members of the genera Streptomyces (2 isolates), Nonomuraea (1 isolate), Actinomadura (1 isolate), Pseudonocardia (1 isolate) and Nocardia (3 isolates). The remaining 2 isolates were unidentified. All of isolates produced the amount of indole-3-acetic acid (IAA) and ammonia ranging between 9.85 ± 0.31 to 15.14 ± 0.22 μg ml?1 and 2 to 60 mg ml?1, respectively. Among 10 isolates tested, the amount of hydroxamate-type siderophore produced by 2 isolates was undetectable. While the remaining 8 isolates produced the amount of hydroxamate-type ranging between 3.21 ± 0.12 and 39.30 ± 0.40 μg ml?1. Also, catechols-type siderophore produced by 9 isolates was undetectable. Actinomadura glauciflava is only one isolate that produced catechols-type 4.12 ± 0.90 μg ml?1. In addition, 10 endophytic actinomycetes showed protease activity ranging from undetectable to 8.16 ± 0.15 unit ml?1. Genetic relatedness amongst these isolates was determined base on Random amplified polymorphic DNA (RAPD) and Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC PCR). Both methodologies generated specific patterns corresponding to particular genotypes. RAPD fingerprinting proved to be slightly more discriminatory than ERIC PCR. This study is the first published report that actinomycetes can be isolated as endophytes within this plant. It is also the first published report that endophytic actinomycetes are capable of producing IAA and siderophores.  相似文献   

5.
A Gram-positive rod-shaped bacterium isolated on nutrient agar plates incubated at 28 ± 2°C. The identity of the bacterium was confirmed by sequencing of the 16S rRNA gene and it reveals that it shares highest similarity with Bacillus thioparus CECT 7196T (99.08%). It was capable of growing at temperatures ranging from 4 to 40°C, but optimum growth was observed at 28 ± 2°C. Strain NII-0902 is endowed with multiple plant growth promotion attributes such as phosphate solubilization, Indole acetic acid (IAA), siderophore and HCN production, which were expressed differentially at sub-optimal temperatures (5–40°C). It was able to solubilize phosphate (17.7 μg ml−1), and produce IAA (139.7 μg ml−1) at 28 ± 2°C. Qualitative detection of siderophore production and HCN were also observed. At 5°C it was found to express all the plant growth promotion attributes except HCN production. The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth-promoting rhizobacteria (PGPR). Bacillus sp. NII-0902 has a potential ability to colonize roots visualized by transparency, bacterial growth (turbid, milky and narrow zone) along and around roots and truly supported by scanning electron micrograph. Hence, it is proposed that, Bacillus thioparus sp. NII-0902 could be deployed as an inoculant to attain the desired results of bacterization.  相似文献   

6.
Pantoea dispersa strain 1A is a Gram-negative rod-shaped, yellow-pigmented bacterium isolated on nutrient agar plates incubated at 4°C. The identity of the bacterium was confirmed by sequencing of the 16 S rRNA gene. It was capable of growing at temperatures ranging from 4 to 42°C, but maximum growth was observed at 30°C. It is endowed with multiple plant growth promotion attributes such as phosphate solubilization, IAA production, siderophore production and HCN production, which are expressed differentially at sub-optimal temperatures (15 and 4°C). It was able to solubilize phosphate (17.6 μg of P2O5 ml−1 day−1), and produce IAA (3.7 μg ml−1 day−1), at 15°C. Qualitative detection of siderophore production and HCN were also observed at 15°C. At 4°C it was found to express all the plant growth promotion attributes. This bacterial isolate was able to positively influence and promote the growth and nutrient uptake parameters of wheat (cv. VL.802) under glasshouse conditions. Hence in the context, of cold wheat-growing environments, it is proposed that Pantoea dispersa 1A (MTCC 8706), could be deployed as an inoculant to attain the desired results of bacterization.  相似文献   

7.
Lindane or γ- hexachlorocyclohexane (γ-HCH) is a chlorinated pesticide and its toxic effects on biota necessitate its removal. Microbial degradation is an important process for pesticide bioremediation and the role of soil fungi in recycling of organic matter prompted us to study the biodegradation of lindane using fungi. This study aims at enrichment, isolation and screening of soil fungi capable of metabolizing lindane. Two Fusarium species (F. poae and F. solani) isolated from the pesticide contaminated soil showed better growth on the plates supplemented with lindane as a sole carbon source, when compared with the growth performance of other fungal isolates from the same contaminated soil. However, ANOVA revealed a significant difference in fungal biomass production in both F. poae (F = 22.02; N = 15; P < 0.001) and F. solani (F = 268.75; N = 15; P < 0.001) across different lindane concentrations (0–600 μg ml−1). Growth of both Fusarium sp. was maximum at a lindane concentration of 100 μg ml−1, while minimum at 600 μg ml−1 concentrations. Results on the time dependent release of chlorine by the Fusarium strains in the presence of various concentration of lindane showed the highest mineralization of the pesticide on 10th day of incubation. Time dependent variations in the release of chlorine from 1st to 10th day by both the selected fungal strains were found to be statistically significant. A significant positive relationship exists between fungal biomass increase and chlorine release existed for both F. solani (R2 = 0.960) and F. poae (R2 = 0.628). The results of gas chromatograph analysis of γ- HCH confirmed the biodegradation and utilization of γ- HCH by F. poae and F. solani. The data on lindane degradation by the two fungal strains demonstrated that the biodegradation of lindane by F. solani (59.4%) was slightly higher than that by the F. poae (56.7%).  相似文献   

8.
A total of 564 isolates of endophytic fungi were recovered from the plants Deschampsia antarctica and Colobanthus quitensis collected from Antarctica. The isolates were screened against parasites Leishmania amazonensis and Trypanosoma cruzi and against the human tumour cell lines. Of the 313 fungal isolates obtained from D. antarctica and 251 from C. quitensis, 25 displayed biological activity. Nineteen extracts displayed leishmanicidal activity, and six inhibited the growth of at least one tumour cell line. These fungi belong to 19 taxa of the genera Alternaria, Antarctomyces, Cadophora, Davidiella, Helgardia, Herpotrichia, Microdochium, Oculimacula, Phaeosphaeria and one unidentified fungus. Extracts of 12 fungal isolates inhibited the proliferation of L. amazonesis at a low IC50 of between 0.2 and 12.5 μg ml−1. The fungus Phaeosphaeria herpotrichoides displayed only leishmanicidal activity with an IC50 of 0.2 μg ml−1, which is equivalent to the inhibitory value of amphotericin B. The extract of Microdochium phragmitis displayed specific cytotoxic activity against the UACC-62 cell line with an IC50 value of 12.5 μg ml−1. Our results indicate that the unique angiosperms living in Antarctica shelter an interesting bioactive fungal community that is able to produce antiprotozoal and antitumoral molecules. These molecules may be used to develop new leishmanicidal and anticancer drugs.  相似文献   

9.
To provide a basis for using indigenous bacteria for bioremediation of heavy metal contaminated soil, the heavy metal resistance and plant growth-promoting activity of 136 isolates from V-Ti magnetite mine tailing soil were systematically analyzed. Among the 13 identified bacterial genera, the most abundant genus was Bacillus (79 isolates) out of which 32 represented B. subtilis and 14 B. pumilus, followed by Rhizobium sp. (29 isolates) and Ochrobactrum intermedium (13 isolates). Altogether 93 isolates tolerated the highest concentration (1000 mg kg−1) of at least one of the six tested heavy metals. Five strains were tolerant against all the tested heavy metals, 71 strains tolerated 1,000 mg kg−1 cadmium whereas only one strain tolerated 1,000 mg kg−1 cobalt. Altogether 67% of the bacteria produced indoleacetic acid (IAA), a plant growth-promoting phytohormone. The concentration of IAA produced by 53 isolates was higher than 20 µg ml−1. In total 21% of the bacteria produced siderophore (5.50–167.67 µg ml−1) with two Bacillus sp. producing more than 100 µg ml−1. Eighteen isolates produced both IAA and siderophore. The results suggested that the indigenous bacteria in the soil have beneficial characteristics for remediating the contaminated mine tailing soil.  相似文献   

10.
The aim of this work was to select endophytic fungi from mangrove plants that produced antimicrobial substances. Minimal inhibitory concentrations (MIC) and minimal bactericidal concentrations (MBC) or minimal fungicidal concentrations (MFC) of crude extracts from 150 isolates were determined against potential human pathogens by a colorimetric microdilution method. Ninety-two isolates (61.3%) produced inhibitory compounds. Most of the extracts (28–32%) inhibited Staphylococcus aureus (MIC/MBC 4–200/64–200 μg ml−1). Only two extracts inhibited Pseudomonas aeruginosa (MIC/MBC 200/>200 μg ml−1). 25.5 and 11.7% inhibited Microsporum gypseum and Cryptococcus neoformans (MIC/MFC 4–200/8–200 μg ml−1 and 8–200/8–200 μg ml−1, respectively), while 7.5% were active against Candida albicans (MIC/MFC 32–200/32–200 μg ml−1). None of the extracts inhibited Escherichia coli. The most active fungal extracts were from six genera, Acremonium, Diaporthe, Hypoxylon, Pestalotiopsis, Phomopsis, and Xylaria as identified using morphological and molecular methods. Phomopsis sp. MA194 (GU592007, GU592018) isolated from Rhizophora apiculata showed the broadest antimicrobial spectrum with low MIC values of 8–32 μg ml−1against Gram-positive bacteria, yeasts and M. gypseum. It was concluded that endophytic fungi from mangrove plants are diverse, many produce compounds with antimicrobial activity and could be suitable sources of new antimicrobial natural products.  相似文献   

11.
This study was undertaken to explore the role of Trichoderma sp. in phosphate (P) solubilization and antagonism against fungal phytopathogens. All fungal isolates (SE6, KT6, KT28, and BRT11) and a standard culture of T. harzianum (Th-std) were able to antagonize two fungal phytopathogens (Sclerotium rolfsii and Rhizoctonia solani) of chickpea (Cicer arietinum L.) wilt complex. Transmission electron microscopic studies (TEM) further confirmed ultra-cytological changes in the sclerotia of S. rolfsii parasitized by Trichoderma sp. All fungal cultures exhibited production of NH3 and siderophore, but only BRT11, SE6, and Th-std could produce HCN. Among all the cultures tested, isolate KT6 was found to be most effective for solubilization of ferric phosphate releasing 398.4 μg ml−1 phosphate while isolates BRT11 and SE6 showed more potential for tricalcium phosphate (TCP) solubilization releasing 449.05 and 412.64 μg ml−1 phosphate, respectively, in their culture filtrates. Part of this study focused on the influence of abiotic stress conditions such as pH, temperature, and heavy metal (cadmium) on phosphate (TCP) solubilizing efficiency. Two selected cultures KT6 and T. harzianum retained their P solubilizing potential at varying concentrations of cadmium (0–1000 μg ml−1). Isolate KT6 and standard culture of T. harzianum released 278.4 and 287.6 μg ml−1 phosphate, respectively, at 1000 μg ml−1cadmium. Maximum solubilization of TCP was obtained at alkaline pH and at 28°C temperature. Isolate BRT11 was found most alkalo-tolerant releasing 448.0 μg ml−1 phosphate at pH 9.  相似文献   

12.
Streptomyces is a genus with known biocontrol activity, producing a broad range of biologically active substances. Our goal was to isolate local Streptomyces species, evaluate their capacity to biocontrol the selected phytopathogens, and promote the plant growth via siderophore and indole acetic acid (IAA) production and phosphate solubilization. Eleven isolates were obtained from local soil samples in Saudi Arabia via the standard serial dilution method and identified morphologically by scanning electron microscope (SEM) and 16S rRNA amplicon sequencing. The biocontrol of phytopathogens was screened against known soil-borne fungi and bacteria. Plant growth promotion capacity was evaluated based on siderophore and IAA production and phosphate solubilization capacity. From eleven isolates obtained, one showed 99.77% homology with the type strain Streptomyces tricolor AS 4.1867, and was designated S. tricolor strain HM10. It showed aerial hyphae in SEM, growth inhibition of ten known phytopathogens in in vitro experiments, and the production of plant growth promoting compounds such as siderophores, IAA, and phosphate solubilization capacity. S. tricolor strain HM10 exhibited high antagonism against the fungi tested (i.e., Colletotrichum gloeosporides with an inhibition zone exceeding 18 mm), whereas the lowest antagonistic effect was against Alternaria solani (an inhibition zone equal to 8 mm). Furthermore, the most efficient siderophore production was recorded to strain HM8, followed by strain HM10 with 64 and 22.56 h/c (halo zone area/colony area), respectively. Concerning IAA production, Streptomyces strain HM10 was the most effective producer with a value of 273.02 μg/ml. An autochthonous strain S. tricolor HM10 should be an important biological agent to control phytopathogens and promote plant growth.  相似文献   

13.
A variety of plants growing on metalliferous soils accumulate metals in their harvestable parts and have the potential to be used for phytoremediation of heavy metal polluted land. There is increasing evidence that rhizosphere bacteria contribute to the metal extraction process, but the mechanisms of this plant–microbe interaction are not yet understood. In this study ten rhizosphere isolates obtained from heavy metal accumulating willows affiliating with Pseudomonas, Janthinobacterium, Serratia, Flavobacterium, Streptomyces and Agromyces were analysed for their effect on plant growth, Zn and Cd uptake. In plate assays Zn, Cd and Pb resistances and the ability of the bacteria to produce indole-3-acetic acid (IAA), 1-amino-cyclopropane-1-carboxylic acid deaminase (ACC deaminase) and siderophores were determined. The isolates showed resistance to high Zn concentrations, indicating an adaptation to high concentrations of mobile Zn in the rhizosphere of Salix caprea. Four siderophore producers, two IAA producers and one strain producing both siderophores and IAA were identified. None of the analysed strains produced ACC deaminase. Metal mobilization by bacterial metabolites was assessed by extracting Zn and Cd from soil with supernatants of liquid cultures. Strain Agromyces AR33 almost doubled Zn and Cd extractability, probably by the relase of Zn and Cd specific ligands. The remaining strains, immobilized both metals. When Salix caprea plantlets were grown in γ-sterilized, Zn/Cd/Pb contaminated soil and inoculated with the Zn resistant isolates, Streptomyces AR17 enhanced Zn and Cd uptake. Agromyces AR33 tendentiously promoted plant growth and thereby increased the total amount of Zn and Cd extracted from soil. The IAA producing strains did not affect plant growth, and the siderophore producers did not enhance Zn and Cd accumulation. Apparently other mechanisms than the production of IAA, ACC deaminase and siderophores were involved in the observed plant–microbe interactions.  相似文献   

14.
A total of 1035 yeast isolates, obtained from rice and sugar cane leaves, were screened primarily for indole-3-acetic acid (IAA) production. Thirteen isolates were selected, due to their IAA production ranging from 1.2 to 29.3 mg g1 DCW. These isolates were investigated for their capabilities of calcium phosphate and ZnO3 solubilisation, and also for production of NH3, polyamine, and siderophore. Their 1-aminocyclopropane-1-carboxylate (ACC) deaminase, catalase and fungal cell wall-degrading enzyme activities were assessed. Their antagonism against rice fungal pathogens was also evaluated. Strain identification, based on molecular taxonomy, of the thirteen yeast isolates revealed that four yeast species – i.e. Hannaella sinensis (DMKU-RP45), Cryptococcus flavus (DMKU-RE12, DMKU-RE19, DMKU-RE67, and DMKU-RP128), Rhodosporidium paludigenum (DMKU-RP301) and Torulaspora globosa (DMKU-RP31) – were capable of high IAA production. Catalase activity was detected in all yeast strains tested. The yeast R. paludigenum DMKU-RP301 was the best IAA producer, yielding 29.3 mg g1 DCW, and showed the ability to produce NH3 and siderophore. Different levels of IAA production (7.2–9.7 mg g1 DCW) were found in four strains of C. flavus DMKU-RE12, DMKU-RE19, and DMKU-RE67, which are rice leaf endophytes, and strain DMKU-RP128, which is a rice leaf epiphyte. NH3 production and carboxymethyl cellulase (CMCase) activity was also detected in these four strains. Antagonism to fungal plant pathogens and production of antifungal volatile compounds were exhibited in T. globosa DMKU-RP31, as well as a moderate level of IAA production (4.9 mg g1 DCW). The overall results indicated that T. globosa DMKU-RP31 might be used in two ways: enhancing plant growth and acting as a biocontrol agent. In addition, four C. flavus were also found to be strains of interest for optimal IAA production.  相似文献   

15.
Thirteen endophytic fungi were isolated from roots of three orchid species, Spathoglottis affinis, Paphiopedelum bellatulum and Phaius tankervilleae. Of these, three fungal isolates produced high levels of indole-3-acetic acid (IAA) in culture medium supplemented with 2 mg/ml of L-tryptophan, and were selected for further analysis. Morphological characteristics and a phylogenetic analysis based on an alignment of internal transcribed spacer regions of nuclear rDNA indicated that the fungal isolates CMU-SLP 007 and CMU-NUT 013 belonged to family Tulasnellaceae, genus Tulasnella (the anamorphic genus Epulorhiza) and the fungal isolate CMU-AU 006 belonged to Colletotrichum gloeosporioides. These three fungal isolates produced maximum levels of IAA when grown in a culture medium supplemented with 4 mg/ml of L-tryptophan (C. gloeosporioides CMU-AU 006, 243.56 μg/ml and Tulasnella sp. CMU-SLP 007, 155.63 μg/ml) and 6 mg/ml of L-tryptophan (Tulasnella sp. CMU-NUT 013, 104.03 μg/ml). Thin layer chromatography revealed that all fungal IAA presented the same Rf value as the standard IAA. The biological activity of fungal IAA showed that it increased the length of stem forming roots and the number of roots of kidney bean (Phaseolus vulgaris), promoted seed germination, the length of roots and root to shoot ratio of corn (Zea mays) and increased the elongation of rice (Oryza sativa) coleoptiles when compared with all controls (water and culture medium treatments). In addition, the results of all biological activities using fungal IAA indicated that the quality of fungal IAA were similar to standard IAA.  相似文献   

16.
Microbial modification of polyunsaturated fatty acids can often lead to special changes in their structure and in biological potential. Therefore, the aim of this study was to develop potential antifungal agents through the microbial conversion of docosahexaenoic acid (DHA). Bioconverted oil extract of docosahexaenoic acid (bDHA), obtained from the microbial conversion of docosahexaenoic acid (DHA) by Pseudomonas aeruginosa PR3, was assessed for its in vitro and in vivo antifungal potential. Mycelial growth inhibition of test plant pathogens, such as Botrytis cinerea, Colletotrichum capsici, Fusarium oxysporum, Fusarium solani, Phytophthora capsici, Rhizoctonia solani and Sclerotinia sclerotiorum, was measured in vitro. bDHA (5 μl disc−1) inhibited 55.30–65.90% fungal mycelium radial growth of all the tested plant pathogens. Minimum inhibitory concentrations (MICs) of bDHA against the tested plant pathogens were found in the range of 125–500 μg ml−1. Also, bDHA had a strong detrimental effect on spore germination for all the tested plant pathogens. Further, three plant pathogenic fungi, namely C. capsici, F. oxysporum and P. capsici, were subjected to an in vivo antifungal screening. bDHA at higher concentrations revealed a promising antifungal effect in vivo as compared to the positive control oligochitosan. Furthermore, elaborative study of GC-MS analysis was conducted on bioconverted oil extract of DHA to identify the transformation products present in bDHA. The results of this study indicate that the oil extract of bDHA has potential value of industrial significance to control plant pathogenic fungi.  相似文献   

17.
Exiguobacterium acetylicum strain 1P (MTCC 8707) is a gram-positive, rod-shaped, yellow pigmented bacterium isolated from soil on nutrient agar plates at 4°C. The identity of the bacterium was arrived on the basis of the biochemical characterization, BIOLOG sugar utilization pattern and sequencing of the 16S rRNA gene. It grew at temperatures ranging from 4 to 42°C, with temperature optima at 30°C. It expressed multiple plant growth promotion attributes such as phosphate solubilization, indole acetic acid (IAA), siderophore and hydrogen cyanide (HCN) production, differentially at suboptimal growth temperatures (15 and 4°C). At 15°C it solubilized phosphate (21.1 μg of P ml−1 day−1), and produced IAA (14.9 μg ml−1 day−1) in tryptophan amended media. Qualitative detection of siderophore production and HCN were possible at 15°C. At 4°C it retained all the plant growth promotion attributes. Seed bacterization with the isolate, positively influenced the growth and nutrient uptake parameters of wheat seedlings in glass house studies at suboptimal cold growing temperatures.  相似文献   

18.
The aim of the present study was to evaluate phytohormone production by symbiotic and saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis which had previously proved to stimulate nodulation by Frankia. Three saprophytic strains out of 122, isolated from the rhizosphere of this plant with multiple enzymatic activities were selected for plant growth experiments in pots: Streptomyces sp. (BCRU-MM40), Actinoplanes sp. (BCRU-ME3) and Micromonospora sp. (BCRU-MM18). For experiments, the symbiotic N2-fixing strain Frankia (BCU110501), isolated from nodules of the same actinorhizal plant was used. Phytohormone production was evaluated in supernatant of non-inoculated and inoculated culture media in exponential growth phase. Indole 3-acetic acid (IAA) and gibberellic acid (GA3) were analyzed by gas chromatography-mass spectrometry (GC–MS), while zeatine (Z) production was determined by gas chromatography-flame ionization detector and high performance liquid chromatography (HPLC fluorescent and UV). The levels of the three phytohormones produced by the saprophytic rhizoactinomycetes were higher than that produced by the symbiotic Frankia strain. Zeatine biosynthesis was higher (μg ml−1) than IAA and GA3 (ng ml−1), and Micromonospora strain produced the highest levels of these phytohormones. Although O. trinervis has been shown to be intercellularly infected by Frankia without mediation of root hair deformation, when plants were co-inoculated with actinomycetes’ culture, some root hair deformation was observed. This is the first report on identification of IAA, GA3 and Z in saprophytic actinomycetes and their potential role in plant–microbe interaction.  相似文献   

19.
Pinus taeda is one of the main timber trees in Brazil, occupying 1.8 million ha with an annual productivity of 25–30 m3 ha−1. Another important species is Araucaria angustifolia, belonging to the fragile Rainforest biome, which for decades has been a major source of timber in Brazil. Some diseases that affect the roots and/or the stem of these trees and cause “damping-off” of the seedlings, with economic and environmental losses for the forest sector, are caused by the plant pathogenic fungi Fusarium sp. or Armillaria sp. This research project intended to isolate actinobacteria from the Araucaria rhizosphere, which present an antagonistic effect against these fungi. After the selection of the best pathogen inhibitors, morphologic characteristics, enzyme production, and their effect on the growth of Pinus taeda were studied. The actinobacteria were tested for their antagonistic capacity against Fusarium sp. in Petri plates with PDA as substrate. The inhibition zone was measured after 3, 5, 7, and 10 days. Of all the isolates tested, only two of them maintained inhibition zones up to 4 mm for 10 days. The inhibition of Armillaria sp. was tested in liquid medium and also in Petri dishes through the evaluation of the number of the fungal rhizomorphs in dual culture with the actinobacteria. It was found that all five isolates were able to inhibit the rhizomorph production, with the best performance of the isolate A43, which was capable of inhibiting both fungi, Fusarium and Armillaria. In a greenhouse experiment, the effect of five isolates on the growth of Pinus taeda seedlings was tested. Plant height, stem diameter, root and shoot dry matter were determined. The Streptomyces isolate A43 doubled plant growth. These results may lead to the development of new technologies in the identification of still unknown bacterial metabolites and new management techniques to control forest plant diseases.  相似文献   

20.
Tomato (Lycopersicon esculentum) is important widely grown vegetable in India and its productivity is affected by bacterial wilt disease infection caused by Ralstonia solanacearum. To prevent this disease infection a study was conducted to isolate and screen effective plant growth promoting rhizobacteria (PGPR) antagonistic to R. solanacearum. A total 297 antagonistic bacteria were isolated through dual culture inoculation technique, out of which forty-two antagonistic bacteria were found positive for phlD gene by PCR amplification using two primer sets Phl2a:Phl2b and B2BF:BPR4. The genetic diversity of phlD + bacteria was studied by amplified 16S rDNA restriction analysis and demonstrated eleven groups at 65% similarity level. Out of these 42 phlD + antagonistic isolates, twenty exhibited significantly fair plant growth promoting activities like phosphate solubilization (0.92–5.33%), 25 produced indole acetic acid (1.63–7.78 μg ml−1) and few strains show production of antifungal metabolites (HCN and siderophore). The screening of PGPR (phlD +) for suppression of bacterial wilt disease in glass house conditions was showed ten isolated phlD + bacteria were able to suppress infection of bacterial wilt disease in tomato plant (var. Arka vikas) in the presence R. solanacearum. The PGPR (phlD +) isolates s188, s215 and s288 was observed to be effective plant growth promoter as it shows highest dry weight per plant (3.86, 3.85 and 3.69 g plant−1 respectively). The complete absence of wilt disease symptoms in tomato crop plants was observed by these treatments compared to negative control. Therefore inoculation of tomato plant with phlD + isolate s188 and other similar biocontrol agents may prove to be a positive strategy for checking wilt disease and thus improving plant vigor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号