首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Invasions by alien plant species may substantially alter soil seed bank communities. While decreases in seed bank species richness, diversity, and composition as a consequence of plant invasions have been reported, the characteristics of seed banks associated with different invasive species have not been compared in any detail. Here, we describe changes in the characteristics of soil seed banks invaded by three large herbaceous invasive plants, Fallopia japonica, Gunnera tinctoria, and Heracleum mantegazzianum. The study was carried out at the spatial scales of site and plot, to reduce variability in seed bank data. Information on seed bank persistence was inferred from seed depth (0–5, 5–10, and 10–15 cm) and from time of sampling (May and October). Despite differences in the reproductive strategy and geographic distribution of these invaders, as well as in the standing vegetation and habitat types examined, the seed banks of invaded areas were similar in composition and in the relative abundance of different species. Invaded seed banks were dominated by seeds of a few agricultural weed species and/or rushes, suggesting that common features of the invaders, including a large standing biomass, extensive litter production, and the formation of mono-species stands may result in comparable selection pressures that favors traits that are largely genera or species-specific. These findings have a direct relevance for the development of strategies aimed at restoring previously-invaded sites while also improving our understanding of the long-term implications of plant invasions.  相似文献   

2.
We compared species composition and diversity of the soil seed and seedling banks in three secondary vegetation types (shrubland, Populus bonatii forest, Lithocarpus regrowth forest) and a primary old-growth forest in the subtropical Ailao Mountains of southwestern China to clarify the importance of seed and seedling banks for forest dynamics. The average species richness was the highest in soil samples from the shrubland (26.80 ± 1.98), and the lowest from the primary forest (9.93 ± 0.50). The density of germinable tree seeds increased from the secondary vegetation to the primary forest, and the density of shrub, forb, and graminoid seeds decreased significantly. The most abundant seedlings recorded in soil samples were light-demanding species in the shrubland and Populus bonatii forest. For ground flora, the number of shrub seedlings strongly decreased with the increase in stand age, and shade-tolerant tree seedlings tended to increase. The species similarity between the seed bank and the aboveground vegetation in all sites was low (Sørensen’s index = 0.11–0.33), however, the shrubland had higher similarity compared with the other three plant communities. In the primary forest, light-demanding woody species dominated in soil seed banks, while shade-tolerant species dominated in the overstory and the forest floor. In the primary forest, seedlings of dominant tree species were rare in the understory, and no seeds of the dominant species were found in the soil. Results indicated that the early stages of vegetation recovery should take into account the possibility of recovering soil seed bank processes. However, colonization and establishment of tree seedlings will be difficult once a primary forest is destroyed.  相似文献   

3.
Acacia senegal is endemic to dry forest and woodland ecosystems of Sub-Saharan Africa and provides both ecological and socio-economic benefits. However, these ecosystems are threatened by escalating human disturbances and fragmentation. To investigate the human impacts on genetic diversity and structure of A. senegal, we studied genetic variability and differentiation of 330 individual trees from 11 natural A. senegal populations, grouped into lightly and heavily disturbed, using 12 polymorphic nuclear microsatellite markers. Gene diversity (H E ) ranged from H E = 0.570 to H E = 0.632. Significant differences (P < 0.05) between the levels of disturbances are reported for mean gene diversity, number of alleles and allelic richness with lightly disturbed populations showing higher values. Overall, the indirect estimates of average outcrossing rates ranged from 0.794 (Kiserian) to 0.999 (Kampi ya Moto) with a mean of 0.997 suggesting a predominantly outcrossing species. There was no significant relationship (P > 0.05) detected between genetic and geographic distances, showing lack of isolation by distance. Analysis of population structure using unweighted pair group method with arithmetic mean and Bayesian model suggests presence of three gene pools as most probable, although most individuals showed mixed ancestry. The diversity and genetic structure reported in this study revealed negative impacts of human disturbance on A. senegal within this ecosystem. We recommend in-situ conservation strategies to safeguard the woodland ecosystem from further deforestation.  相似文献   

4.
Sad pine is one of the most prominent pine species in Mexico due to its conspicuous pendulous foliage and extreme habitat. However, scientific studies of the species are scarce, and genetic information on sad pine populations is lacking. This endemic tree species occurs naturally on the Sierra Madre Occidental where it covers a total area of about 1,600,000 ha. It typically grows with several species of Quercus and Pinus or in pure stands in uneven-aged forests. Pinus lumholtzii is naturally spatially fragmented, and genetic research on seed and pollen dispersal patterns and spatial genetic structure (SGS)—and the possible implications of these in terms of evolution, conservation and breeding management—is particularly important. Given the fragmented occurrence of the preferred soil type, the goal of this research was to use amplified fragment length polymorphism (AFLP) markers to identify potential differences in spatial genetic structure within and between five P. lumholtzii seed stands at fine and large scales. At the fine scale, we almost always observed non-significant autocorrelation, suggesting that the genetic variants of P. lumholtzii are randomly distributed in space within each sampled seed stand. At the larger scale, our findings provide strong support for the theory of isolation by distance that predicts the expected pattern of SGS at drift–dispersal equilibrium. We recommend a network of P. lumholtzii seed stands of maximum distances of 100 km among stands to prevent greater loss of local genetic variants and use the seeds for reforestations in a radius of maximal 50 km from their proveniences.  相似文献   

5.
Invasive African olive, Olea europaea ssp. cuspidata (Wall. ex G.Don) Cif., forms increasingly dense stands between initial and mature stages of invasion, leading to a progressive decline in native plant diversity. Here, we examined the response of leaf-litter invertebrates to increasing time since olive invasion. We compared invertebrate assemblages among early-stage olive (0–7 years since invasion, scattered olive shrubs and seedlings in native woodland), mature olive (>15 years, uniform olive stands dominated by multi-trunked trees) and uninvaded native grassy woodland habitats (both mature stands and edges) in a critically endangered ecological community of south-eastern Australia. Invertebrate species richness was significantly reduced in mature olive compared with early-stage olive and mature native woodland habitats. Species richness did not differ significantly between early-stage olive habitat and mature native woodland, demonstrating resistance in species richness to initial invasion. Invertebrate species composition of native woodlands differed significantly from both mature olive and early-stage olive habitats, demonstrating a lack of resistance in species composition to initial olive invasion. Compositional differences were principally driven by reduced abundances within Coleoptera, Hymenoptera and Polyxenida in mature olive habitat compared with mature native woodland. These changes were significantly correlated with an increase in bare ground, plant canopy cover and litter depth, and higher moisture and lower temperature within leaf litter, in mature olive habitat. Our findings show that negative ecological impacts of invasive African olive extend beyond plants to leaf-litter invertebrate assemblages and that significant impacts on invertebrate species assemblage composition occur early in the invasion process.  相似文献   

6.
We examined differences in fine root morphology, mycorrhizal colonisation and root-inhabiting fungal communities between Picea abies individuals infected by Heterobasidion root-rot compared with healthy individuals in four stands on peat soils in Latvia. We hypothesised that decreased tree vitality and alteration in supply of photosynthates belowground due to root-rot infection might lead to changes in fungal communities of tree roots. Plots were established in places where trees were infected and in places where they were healthy. Within each stand, five replicate soil cores with roots were taken to 20 cm depth in each root-rot infected and uninfected plot. Root morphological parameters, mycorrhizal colonisation and associated fungal communities, and soil chemical properties were analysed. In three stands root morphological parameters and in all stands root mycorrhizal colonisation were similar between root-rot infected and uninfected plots. In one stand, there were significant differences in root morphological parameters between root-rot infected versus uninfected plots, but these were likely due to significant differences in soil chemical properties between the plots. Sequencing of the internal transcribed spacer of fungal nuclear rDNA from ectomycorrhizal (ECM) root morphotypes of P. abies revealed the presence of 42 fungal species, among which ECM basidiomycetes Tylospora asterophora (24.6 % of fine roots examined), Amphinema byssoides (14.5 %) and Russula sapinea (9.7 %) were most common. Within each stand, the richness of fungal species and the composition of fungal communities in root-rot infected versus uninfected plots were similar. In conclusion, Heterobasidion root-rot had little or no effect on fine root morphology, mycorrhizal colonisation and composition of fungal communities in fine roots of P. abies growing on peat soils.  相似文献   

7.
Effects of pond size and isolation on total vascular plant species richness and number of obligate wetland species were compared. Subsequently, the potential for the presence of spatial patterns in wetland species distribution among ponds in an agricultural landscape was explored. Relationships between species richness and two main biogeographic parameters were analysed using simple and multiple linearised regression models. Spatial patterns were looked for by means of analyses carried out with the R CRAN software (join-count statistics). Simple regression analyses performed on the regional scale (n = 50) revealed the significance of the effect of pond size only (r = 0.46 for total plant species richness and r = 0.28 for wetland species richness vs. pond area). Further analyses conducted on the local scale identified the best multiple regression models in the largest pond cluster (n = 20); the models showed statistical significance of relationships between the species richness and both independent variables (r = 0.80 for total plant species richness and r = 0.70 for wetland species richness vs. pond area and isolation, including mean distance to the nearest ten ponds). Spatial analyses were performed for 26 obligate wetland species selected from 149 species recorded in all the 50 ponds. Exploratory spatial data analysis revealed the presence of significant positive spatial autocorrelation in the distribution of 8 species. In such cases, it is possible to reject the random distribution hypothesis, which justifies exploration of spatial regimes. In practice, correct spatial model specifications may have implications for predicting species occurrences under changing environmental conditions, e.g. changes in the number of ponds.  相似文献   

8.
Understanding how biotic interactions and abiotic conditions affect plant performance is important for predicting changes in ecosystem function and services in variable environments. We tested how performances of Astragalus rigidulus and Potentilla fruticosa change along gradients of biotic interactions (represented by plant species richness, abundance of the dominant plant species Kobresia pygmaea, and herbivory intensity) and abiotic conditions (represented by elevation, aspect, and slope steepness) across a semi-arid landscape in central Tibet. Redundancy analyses showed that the biotic variables explained 30 and 39 % of the variation in overall performance of A. rigidulus (P = 0.03) and P. fruticosa (P = 0.01), respectively. Abiotic variables did not contribute significantly to variation among A. rigidulus populations. Plant size decreased with species richness in both species and was larger on south- rather than north-facing slopes. Reproductive effort for both species was significantly negatively related to the abundance of K. pygmaea and both species had larger reproductive effort on south- rather than north- and west-facing slopes. The proportion of biomass allocated to sexual reproduction in P. fruticosa was negatively correlated with K. pygmaea abundance and herbivory intensity. The population density of P. fruticosa was positively related to elevation, species richness, and K. pygmaea abundance. We conclude that plant performance at a local scale was more strongly related to biotic than abiotic conditions, but different components of plant performance responded differently to predictor variables and the responses were species-specific. These findings have important implications for rangeland management under changing environmental conditions.  相似文献   

9.
Community N-mixture abundance models for replicated counts provide a powerful and novel framework for drawing inferences related to species abundance within communities subject to imperfect detection. To assess the performance of these models, and to compare them to related community occupancy models in situations with marginal information, we used simulation to examine the effects of mean abundance \((\bar{\lambda }\): 0.1, 0.5, 1, 5), detection probability \((\bar{p}\): 0.1, 0.2, 0.5), and number of sampling sites (n site : 10, 20, 40) and visits (n visit : 2, 3, 4) on the bias and precision of species-level parameters (mean abundance and covariate effect) and a community-level parameter (species richness). Bias and imprecision of estimates decreased when any of the four variables \((\bar{\lambda }\), \(\bar{p}\), n site , n visit ) increased. Detection probability \(\bar{p}\) was most important for the estimates of mean abundance, while \(\bar{\lambda }\) was most influential for covariate effect and species richness estimates. For all parameters, increasing n site was more beneficial than increasing n visit . Minimal conditions for obtaining adequate performance of community abundance models were n site  ≥ 20, \(\bar{p}\) ≥ 0.2, and \(\bar{\lambda }\) ≥ 0.5. At lower abundance, the performance of community abundance and community occupancy models as species richness estimators were comparable. We then used additive partitioning analysis to reveal that raw species counts can overestimate β diversity both of species richness and the Shannon index, while community abundance models yielded better estimates. Community N-mixture abundance models thus have great potential for use with community ecology or conservation applications provided that replicated counts are available.  相似文献   

10.
The introduction and establishment of non-native plant pathogens into new areas can result in severe outbreaks. Septoria leaf spot and canker caused by Sphaerulina musiva is one of the most damaging poplar diseases in northeastern and north-central North America. Stem and branch cankers can be devastating on susceptible trees, leading to tree death and reduced biomass in commercial plantations. In the Pacific Northwest region of North America, the first report of the disease was made in 2006 in the Fraser Valley of British Columbia (BC), Canada. To investigate the incidence and distribution of S. musiva from its point of introduction into BC, five plantations of Populus trichocarpa (black cottonwood), 500 P. trichocarpa trees from natural populations, and 23 plantations of hybrid poplars were surveyed by using real-time PCR assays targeting S. musiva and its native sister species, S. populicola. Our survey suggests a strong anthropogenic signature to the emergence of the non-native S. musiva. Detection frequency of S. musiva was high in hybrid poplar plantations (116 trees infected, 54.2 % of the sampled trees), while detection of the native S. populicola was limited to 13.1 % (22 trees infected). By contrast, in natural stands of P. trichocarpa, less than 2 % of the trees were positive for S. musiva (7 trees) while ~75 % were positive for S. populicola (433 trees). All the S. musiva detections in natural stands of the native P. trichocarpa were from trees located in the vicinity (<2.5 km) of hybrid poplar plantations. Identification of the genotypes found in the hybrid poplar plantations revealed that they are in majority F1 progeny from P. trichocarpa × P. deltoides (T × D) (82 %) and P. nigra × P. maximowiczii (N × M) (7.8 %) crosses, which are generally susceptible (intermediate level of susceptibility between the two parental species) to the canker disease. Our results suggest that the emergence of S. musiva in BC is related to the planting of susceptible hybrid poplars. Even if the disease has not yet established itself in natural poplar populations outside of the Fraser Valley, infected plantations could act as a reservoir that could promote its spread into nearby native P. trichocarpa populations.  相似文献   

11.
Gravel-sand river terraces were nearly eliminated from central European landscape by river channelization. Monotypic stands of common reed (Phragmites australis) growing on such terraces are often stressed by drought, which makes them vulnerable to Lipara spp. (Diptera: Chloropidae) gallmakers. Although Lipara are considered ecosystem engineers, only fragmentary information is available on the biology of their parasitoids and inquilines. We analyzed the assemblages of arthropods (Arachnida, Collembola, Dermaptera, Psocoptera, Thysanoptera, Hemiptera, Raphidioptera, Neuroptera, Coleoptera, Diptera, Lepidoptera and Hymenoptera) that emerged from 17,791 Lipara-induced galls collected in winter from 30 reed beds in the Czech Republic, 15 of which were situated at (post)industrial sites (gravel-sandpits, tailing ponds, limestone quarries, colliery dumps, and reclaimed lignite open-cast mines) and 15 were in near-natural habitats (medieval fishponds, and river and stream floodplains). The Chao-1 estimator indicated 229.3 ± 18.1 species in reed galls at (post)industrial and 218.1 ± 23.6 species at near-natural sites, with the Sørensen index reaching only 0.58. We identified 18 red-listed species and four new species for the Czech Republic (Gasteruption phragmiticola, Echthrodelphax fairchildii, Haplogonatopus oratorius and Enclisis sp.), representing mostly obligate (64 %) or facultative (9 %) reed specialists. We propose that Lipara gall-associated assemblages undergo a long-term cyclic ecological succession. During first 10 years after reed bed formation, only Lipara spp. and several other species occur. During next decades, the reed beds host species-rich assemblages with numerous pioneer species (Singa nitidula, Polemochartus melas) that critically depend on presence of prior disturbances. Middle-aged reed beds (near medieval fishponds) are prevalently enriched in common species only (Oulema duftschmidi, Dimorphopterus spinolae). Habitats with the longest historical continuity (river floodplains) host again species-rich assemblages with several rare species that probably require long-term habitat continuity (Homalura tarsata, Hylaeus moricei). Landscape dynamics is thus critical for the persistence of a full spectrum of reed gall inquilines, with (post)industrials serving as the only refugia for pioneer species ousted from their key nesting habitats at once cyclically disturbed gravel-sand river terraces.  相似文献   

12.
Management of semi-natural grasslands should be based on the requirements of plants as well as their pollinators since conditions beneficial for plants are not necessarily beneficial for their pollinators and vice versa. The factors affecting the reproductive success (fruit set) of Platanthera bifolia and Platanthera chlorantha and their pollinators in agricultural landscape and woodlands were studied. In the years 2014–2016, we observed and caught moths during the flowering period of Platanthera species (late June–mid July) in four pure P. bifolia, five pure P. chlorantha and nine mixed populations under management or no management in Estonia. We determined pollinator species richness, pollinator abundance, fruit set and visibility of Platanthera plants in each population. We found that pollinator assemblages of P. bifolia and P. chlorantha did not differ between managed and unmanaged sites. Pollinator abundance had an effect on the fruit set of P. bifolia but not on that of P. chlorantha. Presence or absence of management, visibility of plants and rarefied pollinator species richness did not affect the fruit set of either plant species. Pollinator abundance was significantly higher in unmanaged populations of both plant species but rarefied pollinator species richness was higher only in unmanaged populations of P. chlorantha. Based on our findings the recommendations for management of semi-natural grasslands are to promote larger landscape diversity for the benefit of moth abundance by leaving unmanaged patches in different parts of a grassland in different years and rotational and post-fruiting management for higher reproductive success of orchids.  相似文献   

13.
In this study, we investigated the influence of cold stratification on seed germination in S. × niederederi, a hybrid between the North American S. canadensis and the European S. virgaurea, using fruit samples collected in 2016 in Poland. We aimed to test the hypothesis that the low temperature exposure decreases the final percentage and speed of seed germination in the hybrid and its parental species. For each species, sets of 100 achenes in three replications were mixed with dry sand and stored in Petri dishes in darkness for 12 weeks, at ?18 °C and?+?4 °C, and?+?25 °C. The seeds were incubated for 21 d at room temperature (+25 °C), under the 12 h photoperiod (630 lx). We showed a lack of significant differences in: (i) the final percentage of germinated seeds of studied species stored at the same conditions, (ii) the final percentage of germinated seeds between the applied stratification conditions in the hybrid and its parental species, and (iii) the mean values of Timson’s index, mean germination time, and coefficient of velocity of germination between the stratification conditions in each species. The statistically significant inter-specific differences in the mean germination time parameter after the +25 °C treatment suggest that the seeds of S. × niederederi are able to germinate faster than the seeds of its parental species. However, to improve our knowledge of naturalization and invasion abilities of S. × niederederi by sexual reproduction, the seed germination and seedling survival of the hybrid should be tested in the field.  相似文献   

14.
Revegetation using native species requires the development of seed transfer zones that capture genetic distinctiveness and adaptive potentials while avoiding potential maladaptation and genetic contamination by exotic genotypes. Delineation based on phylogeographic information has recently been used to establish seed transfer zones; however, only a few herbaceous species that are suitable for revegetation have been investigated in the temperate regions of Japan. We investigated the phylogeography of non-coding regions of chloroplast DNA of ten native species in the temperate regions of Japan. Although no species showed clear-cut geographical distributions of the 2–14 haplotypes identified, spatially constrained Bayesian clustering showed two clusters in five species (Calamagrostis epigejos, Eragrostis ferruginea, Imperata cylindrica, Microstegium japonicum, and Microstegium vimineum) but not for others. Posterior modes of clusters for I. cylindrica and M. vimineum showed delineations at Chubu (the middle of Honshu Island), which divide the study region into northeastern and southwestern regions, indicating that these species had recovered from glacial refugia. Posterior mode of cluster for E. ferruginea showed that one consists of a coastal zone along the Pacific Ocean side of western Japan, while the other consists of the remaining area, indicating range expansion from south coast to north. Delineation of C. epigejos and M. japonicum were unclear. The mixed results indicated that establishing seed transfer zones for herbaceous species in Japan will require phylogeographical studies on a wide range of species that may be suitable for revegetation.  相似文献   

15.
Interactions between trees and ectomycorrhizal fungi are critical to the growth and survival of both partners. However, ectomycorrhizal symbiosis has barely been explored in endangered trees, and no information is available regarding soil spore banks of ectomycorrhizal fungi from forests of threatened trees. Here, we evaluated soil spore banks of ectomycorrhizal fungi from endangered Japanese Douglas-fir (Pseudotsuga japonica) forests using bioassay approaches with congeneric P. menziesii and Pinus densiflora seedlings in combination with molecular identification techniques. Rhizopogon togasawariana was predominant in soil propagule banks and was found in all remaining P. japonica forests when assayed with P. menziesii, while no colonization of this fungus was observed on Pinus seedlings. Given the observed specificity of R. togasawariana for P. menziesii and its phylogenetic position within the Pseudotsuga-specific Rhizopogon lineage, its geographical distribution is likely restricted to the remaining Japanese Douglas-fir forests, indicating a high extinction risk for this fungus as well as its endangered host. Spore banks of R. togasawariana remained highly infective after preservation for 1 year or heat treatment at 70 °C, suggesting an ecological strategy of establishing ectomycorrhizal associations on regenerating Japanese Douglas-fir seedlings after disturbance, as observed in other Rhizopogon–Pinaceae combinations. Therefore, the regeneration of Japanese Douglas-fir seedlings may depend largely on the soil spore banks dominated by R. togasawariana, which has co-evolved with the Japanese Douglas-fir for over 30 million years. More attention must be paid to underground ectomycorrhizal fungi for the conservation of endangered tree species, especially in the era of human-induced mass extinction.  相似文献   

16.
Bombacoideae is one out of nine subfamilies of Malvaceae and encompasses 160 tree species. The subfamily is karyotypically characterized by small and numerous chromosomes and is traditionally known by a remarkable inter- and intraspecific chromosome number variation. We conducted a comparative cytogenetic analysis to investigate karyotype diversity and chromosome evolution within Bombacoideae. To achieve this, we performed new chromosome counts, CMA/DAPI double staining, genome size estimations, and localization of 5S and 45S rDNA by fluorescence in situ hybridization for 21 species distributed across the Bombacoideae phylogeny. We performed ancestral states reconstruction analyses to elucidate chromosome evolution and provide insights into the systematics and evolution of Bombacoideae in comparison with other Malvaceae species. Newly generated data on chromosome number on Bombacoideae revealed diploids (Ochroma (2n = 84), Cavanillesia, Pochota, Pseudobombax (2n = 88), and Pachira (2n = 92)) and polyploids (Adansonia digitata (2n = 160) and Eriotheca species (2n = ca. 194 and 2n = 276)). For most species, in situ hybridization revealed karyotype, with two pairs of 45S rDNA sites co-located with CMA+ bands, and 5S rDNA sites in only one chromosome pair. Taken together, our results provide support to the hypothesis of karyotypic stability in Bombacoideae. Only the Pachira s.l. clade displayed some variability in ploidy level, number of CMA+ bands and 45S rDNA sites, and genome size compared to other Bombacoideae clades. The Striated bark clade was characterized by comparatively small genomes and low cytomolecular variability. Karyotypic data were related to biogeographic and species richness patterns of Bombacoideae.  相似文献   

17.
In situ edaphic factors affecting seed germination and seedling emergence of three framework species of Acacia were investigated with the intent of developing fundamental and scalable restoration capacity for Arabian dryland restoration. Direct seeding represents the most efficient means to restore vegetation at the landscape scale and this study provides insight into edaphic and ecological limitations, as well as effective protocols governing the use of native seeds for restoration in hyper-arid environments. The study was conducted in extant Acacia woodland habitat on conserved land (Thumamah Nature Park) in close proximity to Riyadh, Saudi Arabia. Broad-scale direct seeding using un- and pretreated Acacia gerrardii, A. tortilis, and A. ehrenbergiana seed, and two seed burial depths were implemented across three sites with distinct soil surface characteristics. Eight weeks post-sowing, random samples for each species × seed treatment × burial depth combination were excavated, sieved, and categorized as follows: failed to germinate, germinated but died prior to emerging, or successfully emerged. We show that germination and emergence of Acacia gerrardii, A. tortilis, and A. ehrenbergiana were driven by a three-way interaction among species, site, and seed burial depth. Treating seed with the signaling compound Moddus did not have a definitive effect, positive or negative, on any of the species investigated. Acacia gerrardii was the only species that exhibited widespread emergence, though emergence was not consistent across sites or burial depths. Germination was highest in disturbed soil (up to 69% for A. gerrardii), but very few (<2%) successfully emerged; a greater proportion of germinants in sandy soil emerged (up to 44% for A. gerrardii) even though the overall germination was less. Though species-dependent, a 2-cm sowing depth was most effective in sand; while in disturbed soil, sowing depths of 1 and 2 cm were comparable; and no germination was observed in gravelly clay soil. Sandy soil exhibited rapid water infiltration (107.6 mm min?1), and post-sowing surface crusting was a non-factor (0.44 kg cm?2). Disturbed soil exhibited moderate water infiltration (1.46 mm min?1) and post-sowing surface crusting was double that of sand (0.88 kg cm?2) and restrictive on seedling emergence. Gravelly clay exhibited extremely poor water infiltration (0.12 mm min?1), and surface crusting was severe (4.49 kg cm?2) and an order of magnitude greater than sand. The medium-coarse sand fraction, a key driver of the observed soil surface processes, was greatest in sand (55%) and significantly less and uniform in the disturbed (22%) and gravelly clay (22%) soils. Our findings demonstrate that soil surface characteristics and associated processes can dictate ecological processes at depths as shallow as 1–2 cm, and that soil crusts that slow water infiltration and impede seedling emergence rapidly reconstitute after disturbance; both are important considerations for restoring dryland vegetation.  相似文献   

18.
Bubble chamber incubation of surface sterilized segments of root bark and xylem of 10 riparian tree species of the Sampaje (475–500 m asl) and V?Badaga (765–800 m asl) stream reaches of the Western Ghats yielded 20 species of endophytic aquatic hyphomycetes. Anguillospora crassa, A. longissima and Cylindrocarpon sp. were among the top five species in streams. A two-way ANOVA showed significantly higher species richness and counts of conidium in the tree species of Sampaje compared to V?Badaga (p < 0.001), while two variables were not significantly different between bark and xylem. The total number of species recovered was slightly higher in bark than in xylem (14–19 vs. 13–17 spp.) and the average species richness between tissues did not differ significantly except for one tree species (Madhuca neriifolia: p < 0.05). The release of conidia from bark of only three tree species was significantly higher than from xylem (M. neriifolia and Canarium strictum: p < 0.05; Vateria indica: p < 0.01). Sørensen’s similarity index for bark as well as xylem between tree species was higher in Sampaje stream than in V?Badaga stream (0.45–0.78 vs. 0.25–0.61). The diversity of aquatic hyphomycetes in bark and xylem was higher in the trees of Sampaje than V?Badaga (3.1–3.3 vs. 2.7). A cluster analysis of aquatic hyphomycetes in bark and xylem resulted in two groups coinciding with the two streams. The results of this study revealed that assemblage and diversity of endophytic aquatic hyphomycetes in riparian tree roots are high in the mid-altitude Sampaje stream as previously documented for saprotrophic aquatic hyphomycetes.  相似文献   

19.
Amplified fragment length polymorphism (AFLP) fingerprinting and three different plastidic DNA regions (rpl16, rps16, atpF-atpH) were used to investigate species identity in the genus Wolffiella. For this purpose, clones (67 in total) belonging to all ten species were selected. Almost all the species were represented by more than one clone. The fingerprinting technique, AFLP, clearly distinguished the species, W. caudata, W. gladiata, W. neotropica, W. rotunda, and W. welwitschii. Apart from confirming the molecular identity of these five species, the plastidic markers could delineate two additional species, W. hyalina and W. denticulata, although the conclusion concerning the latter is restricted by the availability of only one clone. The efficiency of the plastid-derived markers in identifying the number of species-specific clusters followed the sequence rps16 > rpl16 > atpF-atpH. The species W. lingulata, W. oblonga, and W. repanda could not be identified by any of the molecular methods presented here, but could be strictly defined on a morphological basis. In several clones, high amounts of genetic admixtures between different species were detected. Further, simulation studies demonstrated that these clones are genetic hybrids. This might be one of the obstacles in molecular identification of species in the genus Wolffiella.  相似文献   

20.
Potential impacts of an exotic grass, Hemarthria altissima, on restoration of wet prairie community structure (species richness and cover of indicator species) and assembly processes (temporal turnover rates of plant species) on the Kissimmee River floodplain in Central Florida, USA, were evaluated over a 12-year period before and after restoration of hydrologic regimes (2001), and implementation of herbicide treatments (2006–2007) to control its spread. Thresholds for impacts were derived from comparisons of sample sites with variable levels of H. altissima cover. Prior to herbicide treatments, cover of H. altissima exhibited a logistic increase over time, with peak colonization and expansion occurring during major flood events. Mean post-restoration cover of three native wet prairie indicator species (Polygonum punctatum, Panicum hemitomon, and Luziola fluitans) increased to 37.8 ± 3.4 % in plots in which H. altissima cover was <12 %, and did not exceed 15 % in any plots with H. altissima cover >30 %. Prior to and after herbicide treatments, these indicator species largely accounted for observed differences in wet prairie community structure (i.e., cover of wetland forbs and grasses) between heavily infested sites and plots with low or no cover of H. altissima. The cover threshold at which H. altissima began to have these community-level effects was 40–50 %, but lower species richness was found only where H. altissima cover was >80 %. Increasing cover of H. altissima led to a significant decline in temporal turnover rates of plant species (P < 0.001, r2 = 0.10), but also was largely due to plots with very high (>75 %) cover of H. altissima. Mean temporal turnover rates of plant species increased significantly (P = 0.03) after herbicide treatments and subsequently were highest during an ensuing flood pulse. However, 2–3 years after herbicide treatments, regrowth of H. altissima reestablished high cover (mean = 59 ± 9.5 %) in over half of the treated plots. The ability of H. altissima to establish dominant cover in restored hydrologic conditions on the Kissimmee River floodplain, and documented regrowth following herbicide treatments, increase the potential for this exotic grass species to be a pervasive threat to successful reestablishment of wet prairie community structure and assembly processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号