首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural populations of wild cabbage (Brassica oleracea) show significant qualitative diversity in heritable aliphatic glucosinolates, a class of secondary metabolites involved in defence against herbivore attack. One candidate mechanism for the maintenance of this diversity is that differential responses among herbivore species result in a net fitness balance across plant chemotypes. Such top-down differential selection would be promoted by consistent responses of herbivores to glucosinolates, temporal variation in herbivore abundance, and fitness impacts of herbivore attack on plants varying in glucosinolate profile. A 1-year survey across 12 wild cabbage populations demonstrated differential responses of herbivores to glucosinolates. We extended this survey to investigate the temporal consistency of these responses, and the extent of variation in abundance of key herbivores. Within plant populations, the aphid Brevicoryne brassicae consistently preferred plants producing the glucosinolate progoitrin. Among populations, increasing frequencies of sinigrin production correlated positively with herbivory by whitefly Aleyrodes proletella and negatively with herbivory by snails. Two Pieris butterfly species showed no consistent response to glucosinolates among years. Rates of herbivory varied significantly among years within populations, but the frequency of herbivory at the population scale varied only for B. brassicae. B. brassicae emerges as a strong candidate herbivore to impose differential selection on glucosinolates, as it satisfies the key assumptions of consistent preferences and heterogeneity in abundance. We show that variation in plant secondary metabolites structures the local herbivore community and that, for some key species, this structuring is consistent over time. We discuss the implications of these patterns for the maintenance of diversity in plant defence chemistry.  相似文献   

2.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   

3.
Gynodioecy, the co‐occurrence of hermaphrodite and female individuals within a species, is maintained by differential reproductive success between sexes. Recently, researchers recognized that not only pollinators but also herbivores are important agents in the evolution and maintenance of gynodioecy, when herbivory is hermaphrodite biased. In this study, we investigated whether there is hermaphrodite‐biased herbivory in a gynodioecious plant, Dianthus superbus var. longicalycinus, and if so, what floral traits influenced hermaphrodite‐biased herbivory. We measured flower morphology (flower diameter, calyx tube length, corolla height and petal width) and phenology of flowers of female individuals, hermaphrodites and gynomonoecious individuals in a natural population. We also investigated seed predation and predator species. At the study site, Sibinia weevils (Curculionidae; Coleoptera) and Coleophora moths (Coleophoridae; Lepidoptera) were common pre‐dispersal seed predators in this species. The weevil appeared early in the flowering season, and weevil predation correlated with flower phenology. Because female individuals did not flower early in the season, weevil predation was less frequent in female individuals. Moth predation correlated with calyx length. The calyx length of flowers of female individuals was smaller than those of hermaphrodites, but a direct comparison of moth predation rates failed to find a significant difference among sex morphs. We found that the two seed predators had different effects on floral traits in D. superbus var. longicalycinus. We suggest that weevil predation contributes to the maintenance of gynodioecy because female individuals successfully escaped weevil predation by flowering late. It remains unclear why flower phenology is different among sex morphs.  相似文献   

4.
To determine whether population differentiation in flowering time is consistent with differences in current selection, we quantified phenotypic selection acting through female reproductive success on flowering phenology and floral display in two Scandinavian populations of the outcrossing, perennial herb Arabidopsis lyrata in two years. One population was located in an alpine environment strongly affected by grazing, whereas the other was close to sea level and only moderately affected by herbivory. Multiple regression models indicated directional selection for early end of flowering in one year in the lowland population, and directional selection for early start of flowering in one year in the alpine population. As expected, there was selection for more inflorescences in the lowland population. However, in the alpine population, plants with many inflorescences were selectively grazed and the number of inflorescences produced was negatively related to female fitness in one year and not significantly related to female fitness in the second year. The results are consistent with the hypothesis that genetic differentiation in flowering phenology between the study populations is adaptive, and indicate that interactions with selective grazers may strongly influence selection on floral display in A. lyrata.  相似文献   

5.
Summary We examined the relationship between flowering phenology, reproductive success (seed production only), and seed head herbivory for 20 similarly sized clones of Erigeron glaucus growing at Bodega Bay Reserve, northern California, USA. Although clones tended to reach peak flowering on the same date, they differed in the proportion of their total flowers produced around that date (flowering synchrony). Clones also differed in the number and density of flower heads presented at any one time to pollinators and herbivores (floral display). Both of these characteristics had consequences for herbivory and plant reproductive success. The proportion of flower heads damaged by insect herbivores was greater for clones that concentrated flowering activity during the main flowering period for the population as a whole (high synchrony) compared to clones that spread flowering out temporally. The primary reason for this result was that clones with low flowering synchrony produced a significant proportion of their flower heads during the fall and therefore, escaped attack by the tephritid fly, Tephritis ovatipennis. Clones with intermediate synchrony had lower seed success (total number of viable seeds produced over the year) than clones with either low or high synchrony. The proportion of flower heads damaged by insect herbivores and number of tephritid flies reared from flower heads were both negatively correlated to floral display while seed head mass and germination rates were positively related to display. Thus, clones which produced dense floral displays were favored both in terms of reduced herbivory and increased successful seed production.  相似文献   

6.
We investigated the effect of flowering time, display size, and local floral density on fruit set in Tolumnia variegata, a pollination-limited orchid that offers no reward to its pollinator(s). During 1990, natural variation in flowering time, display size, and fruit set were monitored in 508 plants at one locality in Puerto Rico. The following season, orchid floral abundance per host tree (Randia aculeata) was manipulated to investigate its effect on fruit set. Four floral abundance treatments were established (700, 500, 300, and 100), each replicated four times. Flowering time was the most important trait affecting fruit set. The proportion of plants setting at least one fruit was significantly high early and late in the season, but low during the flowering peak. Thus, strong disruptive selection differential on flowering phenology was found. Display size had little effect on fruit set. A weak, but significant disruptive selection differential on display size was found. Orchid floral abundance per host tree had a significant effect on fruit set. Early in the season, T. variegata flowers with intermediate number of conspecific flowers exhibited a greater probability of setting fruit than those in host trees with fewer or more flowers. Our results show that flowering phenology may be evolutionarily unstable, possibly a consequence of the deception pollination system. Furthermore, a deception strategy would be relatively unsuccessful in populations where plants are found in either very dense or sparse patches.  相似文献   

7.
  • Plants are part of biodiverse communities and frequently suffer from attack by multiple herbivorous insects. Plant responses to these herbivores are specific for insect feeding guilds: aphids and caterpillars induce different plant phenotypes. Moreover, plants respond differentially to single or dual herbivory, which may cascade into a chain of interactions in terms of resistance to other community members. Whether differential responses to single or dual herbivory have consequences for plant resistance to yet a third herbivore is unknown.
  • We assessed the effects of single or dual herbivory by Brevicoryne brassicae aphids and/or Plutella xylostella caterpillars on resistance of plants from three natural populations of wild cabbage to feeding by caterpillars of Mamestra brassicae. We measured plant gene expression and phytohormone concentrations to illustrate mechanisms involved in induced responses.
  • Performance of both B. brassicae and P. xylostella was reduced when feeding simultaneously with the other herbivore, compared to feeding alone. Gene expression and phytohormone concentrations in plants exposed to dual herbivory were different from those found in plants exposed to herbivory by either insect alone. Plants previously induced by both P. xylostella and B. brassicae negatively affected growth of the subsequently arriving M. brassicae. Furthermore, induced responses varied between wild cabbage populations.
  • Feeding by multiple herbivores differentially activates plant defences, which has plant‐mediated negative consequences for a subsequently arriving herbivore. Plant population‐specific responses suggest that plant populations adapt to the specific communities of insect herbivores. Our study contributes to the understanding of plant defence plasticity in response to multiple insect attacks.
  相似文献   

8.
Floral traits have largely been attributed to phenotypic selection in plant–pollinator interactions. However, the strength of this link has rarely been ascertained with real pollinators. We conducted pollinator observations and estimated selection through female fitness on flowering phenology and floral traits between two Primula secundiflora populations. We quantified pollinator‐mediated selection by subtracting estimates of selection gradients of plants receiving supplemental hand pollination from those of plants receiving open pollination. There was net directional selection for an earlier flowering start date at populations where the dominant pollinators were syrphid flies, and flowering phenology was also subjected to stabilized quadratic selection. However, a later flowering start date was significantly selected at populations where the dominant pollinators were legitimate (normal pollination through the corolla tube entrance) and illegitimate bumblebees (abnormal pollination through nectar robbing hole which located at the corolla tube), and flowering phenology was subjected to disruptive quadratic selection. Wider corolla tube entrance diameter was selected at both populations. Furthermore, the strength of net directional selection on flowering start date and corolla tube entrance diameter was stronger at the population where the dominant pollinators were syrphid flies. Pollinator‐mediated selection explained most of the between‐population variations in the net directional selection on flowering phenology and corolla tube entrance diameter. Our results suggested the important influence of pollinator‐mediated selection on floral evolution. Variations in pollinator assemblages not only resulted in variation in the direction of selection but also the strength of selection on floral traits.  相似文献   

9.
The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late‐season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis.  相似文献   

10.
D. Pilson 《Oecologia》2000,122(1):72-82
Plant fitness is strongly affected by flowering phenology, and there are several ecological factors that are thought to shape the distribution of flowering times. One relatively underexamined factor is the timing and intensity of attack by herbivores that feed on flowers or developing seeds. This study tests the hypothesis that herbivores that feed on developing seeds of wild sunflower, Helianthus annuus (Asteraceae), impose selection on flowering phenology. First, the study population was found to contain genetic variation for mean date of flowering, so this trait could evolve if natural selection were operating. Next, the phenological pattern of abundance of five seed-feeding herbivores was documented. Damage by three herbivores, Haplorhynchites aeneus (Cucurlionidae), the head-clipping weevil, Homoeosoma electellum (Lepidoptera: Pyralidae), the sunflower moth, and Suleima helianthana (Lepidoptera: Tortricidae), the sunflower bud moth, was highest early in the flowering season, and declined as the season progressed. Damage by one herbivore, the seed fly Gymnocarena diffusa (Diptera: Tephrididae), was lowest early in the flowering season and increased as the season progressed. Finally, damage by two seed weevils, Smicronyx fulvus and S. sordidus (Curculionidae), whose damage was not distinguished, was constant through the flowering period. Third, damage by Haplorhynchites, Homoeosoma, and Suleima was found to be detrimental to plant fitness, suggesting that plants that flower when these herbivores are not abundant should have higher fitness. Finally, two phenotypic selection analyses were performed. The first included damage by Homoeosoma and Suleima, as well as flowering date, leaf area, and inflorescence diameter, as characters predicting plant fitness. In this analysis directional selection was found to act to decrease damage by the two herbivores, but did not act on flowering date. The second selection analysis was identical except that damage by the two herbivores was not included. In this analysis significant directional selection was found to favor later-flowering plants. Comparison of these two analyses suggests that all selection on flowering phenology is attributable to damage by Homoeosoma and Suleima: plants that flower later avoid damage by these two herbivores. While other influences on flowering phenology, such as pollination, mate availability, and seasonality, have been well documented, this study is one of few to demonstrate natural selection on flowering phenology that is a direct consequence of insect attack. Received: 17 November 1998 / Accepted: 18 July 1999  相似文献   

11.
While many studies demonstrate that herbivores alter selection on plant reproductive traits, little is known about whether antiherbivore defenses affect selection on these traits. We hypothesized that antiherbivore defenses could alter selection on reproductive traits by altering trait expression through allocation trade‐offs, or by altering interactions with mutualists and/or antagonists. To test our hypothesis, we used white clover, Trifolium repens, which has a Mendelian polymorphism for the production of hydrogen cyanide—a potent antiherbivore defense. We conducted a common garden experiment with 185 clonal families of T. repens that included cyanogenic and acyanogenic genotypes. We quantified resistance to herbivores, and selection on six floral traits and phenology via male and female fitness. Cyanogenesis reduced herbivory but did not alter the expression of reproductive traits through allocation trade‐offs. However, the presence of cyanogenic defenses altered natural selection on petal morphology and the number of flowers within inflorescences via female fitness. Herbivory influenced selection on flowers and phenology via female fitness independently of cyanogenesis. Our results demonstrate that both herbivory and antiherbivore defenses alter natural selection on plant reproductive traits. We discuss the significance of these results for understanding how antiherbivore defenses interact with herbivores and pollinators to shape floral evolution.  相似文献   

12.
In sexually polymorphic plant species the extent of gender divergence in floral morphology and phenology may be influenced by gender‐specific selection patterns imposed by pollinators, which may change geographically. Distribution margins are areas where changes in the pollinator fauna, and thus variation in gender divergence of floral traits, are expected. We tested for pollination‐driven geographic variation in the gender divergence in floral and phenological traits in the gynodioecious shrub Daphne laureola, in core and marginal areas differing in the identity of the main pollinator. Pollinators selected for longer corolla tubes in hermaphrodite individuals only in core populations, which in turn recorded higher fruit set. Consistent with these phenotypic selection patterns, gender divergence in flower corolla length was higher in core populations. Moreover, pollinators selected towards delayed flowering on hermaphrodite individuals only in marginal populations, where the two sexes differed more in flowering time. Our results support that a shift in main pollinators is able to contribute to geographic variation in the gender divergence of sexually polymorphic plant species.  相似文献   

13.
Recent theoretical studies have argued that plant-herbivore coevolution proceeds in a diffuse rather than a pairwise manner in multispecies interactions when at least one of two conditions are met: (1) genetic correlations exist between plant resistances to different herbivore species; and (2) ecological interactions between herbivores sharing a host plant cause nonadditive impacts of herbivory on plant fitness. We present results from manipulative field experiments investigating the single and interactive fitness effects of three types of herbivory on scarlet gilia (Ipomopsis aggregata) over two years of study. We utilize these data to test whether selection imposed by herbivore attack on date of first flowering is pairwise (independent) or diffuse (dependent) in nature. Our results reveal complex patterns of the fitness effect of herbivores. Simulated early season browsing had a strong negative fitness effect on plants and also reduced subsequent insect attack. Surprisingly, this ecological interaction did not translate into significant interactions between clipping and insect manipulations on plant fitness. However, we detected a significant interaction between seed fly and caterpillar herbivory on plant fitness, with the negative effect of either insect being greatest when occurring alone. These results suggest that herbivore-imposed selection may have pairwise and diffuse components. In our selection analysis of flowering phenology, we discovered significant pairwise linear selection imposed by clipping, diffuse linear selection imposed by insects, and diffuse nonlinear selection imposed by clipping and insect attack acting simultaneously. Our results reveal that the evolution of flowering phenology in scarlet gilia may be in response to diffuse and pairwise natural selection imposed by multiple herbivores. We discuss the evolution of resistance characters in light of diffuse versus pairwise forms of linear and nonlinear selection and stress the complexity of selection imposed by suites of interacting species.  相似文献   

14.
Although plant–animal interactions like pollination and herbivory are obviously interdependent, ecological investigations focus mainly on one kind of interaction ignoring the possible significance of the others. Plants with flowers offer an extraordinary possibility to study such mutualistic and antagonistic interactions since it is possible to measure changes in floral traits and fitness components in response to different organisms or combinations of them. In a three factorial common garden experiment we investigated single and combined effects of root herbivores, leaf herbivores and decomposers on flowering traits and plant fitness of Sinapis arvensis. Leaf herbivory negatively affected flowering traits indicating that it could significantly affect plant attractiveness to pollinators. Decomposers increased total plant biomass and seed mass indicating that plants use the nutrients liberated by decomposers to increase seed production. We suggest that S. arvensis faced no strong selection pressure from pollen limitation, for two reasons. First, reduced nutrient availability through leaf herbivory affected primarily floral traits that could be important for pollinator attraction. Second, improved nutrient supply through decomposer activity was invested in seed production and not in floral traits. This study indicates the importance of considering multiple plant–animal interactions simultaneously to understand selection pressures underlying plant traits and fitness.  相似文献   

15.
The evolution of floral display and flowering time in animal-pollinated plants is commonly attributed to pollinator-mediated selection. Yet, the causes of selection on flowering phenology and traits contributing to floral display have rarely been tested experimentally in natural populations. We quantified phenotypic selection on morphological and phenological characters in the perennial, outcrossing herb Arabidopsis lyrata in two years using female reproductive success as a proxy of fitness. To determine whether selection on floral display and flowering phenology can be attributed to interactions with pollinators, selection was quantified both for open-pollinated controls and for plants receiving supplemental hand-pollination. We documented directional selection for many flowers, large petals, late start of flowering, and early end of flowering. Seed output was pollen-limited in both years and supplemental hand-pollination reduced the magnitude of selection on number of flowers, and reversed the direction of selection on end of flowering. The results demonstrate that interactions with pollinators may affect the strength of selection on floral display and the direction of selection on phenology of flowering in natural plant populations. They thus support the contention that pollinators can drive the evolution of both floral display and flowering time.  相似文献   

16.
Both the length of the growing season and the intensity of herbivory often vary along climatic gradients, which may result in divergent selection on plant phenology, and on resistance and tolerance to herbivory. In Sweden, the length of the growing season and the number of insect herbivore species feeding on the perennial herb Lythrum salicaria decrease from south to north. Previous common‐garden experiments have shown that northern L. salicaria populations develop aboveground shoots earlier in the summer and finish growth before southern populations do. We tested the hypotheses that resistance and tolerance to damage vary with latitude in L. salicaria and are positively related to the intensity of herbivory in natural populations. We quantified resistance and tolerance of populations sampled along a latitudinal gradient by scoring damage from natural herbivores and fitness in a common‐garden experiment in the field and by documenting oviposition and feeding preference by specialist leaf beetles in a glasshouse experiment. Plant resistance decreased with latitude of origin, whereas plant tolerance increased. Oviposition and feeding preference in the glasshouse and leaf damage in the common‐garden experiment were negatively related to damage in the source populations. The latitudinal variation in resistance was thus consistent with reduced selection from herbivores towards the northern range margin of L. salicaria. Variation in tolerance may be related to differences in the timing of damage in relation to the seasonal pattern of plant growth, as northern genotypes have developed further than southern have when herbivores emerge in early summer.  相似文献   

17.
Urban environments expose species to contrasting selection pressures relative to rural areas due to altered microclimatic conditions, habitat fragmentation, and changes in species interactions. To improve our understanding on how urbanization impacts selection through biotic interactions, we assessed differences in plant defense and tolerance, dispersal, and flowering phenology of a common plant species (Taraxacum officinale) along an urbanization gradient and their reaction norms in response to a biotic stressor (i.e., herbivory). We raised plants from 45 lines collected along an urbanization gradient under common garden conditions and assessed the impact of herbivory on plant growth (i.e., aboveground biomass), dispersal capacity (i.e., seed morphology), and plant phenology (i.e., early seed production) by exposing half of our plants to two events of herbivory (i.e., grazing by locusts). Independent from their genetic background, all plants consistently increased their resistance to herbivores by which the second exposure to locusts resulted in lower levels of damage suffered. Herbivory had consistent effects on seed pappus length, with seeds showing a longer pappus (and, hence, increased dispersal capacities) regardless of urbanization level. Aboveground plant biomass was neither affected by urbanization nor herbivore presence. In contrast to consistent responses in plant defenses and pappus length, plant fitness did vary between lines. Urban lines had a reduced early seed production following herbivory while rural and suburban lines did not show any plastic response. Our results show that herbivory affects plant phenotypes but more importantly that differences in herbivory reaction norms exist between urban and rural populations.  相似文献   

18.
Understanding which environmental variables and traits underlie adaptation to harsh environments is difficult because many traits evolve simultaneously as populations or species diverge. Here, we investigate the ecological variables and traits that underlie Mimulus laciniatus’ adaptation to granite outcrops compared to its sympatric, mesic‐adapted progenitor, Mimulus guttatus. We use fine‐scale measurements of soil moisture and herbivory to examine differences in selective forces between the species’ habitats, and measure selection on flowering time, flower size, plant height, and leaf shape in a reciprocal transplant using M. laciniatus × M. guttatus F4 hybrids. We find that differences in drought and herbivory drive survival differences between habitats, that M. laciniatus and M. guttatus are each better adapted to their native habitat, and differential habitat selection on flowering time, plant stature, and leaf shape. Although early flowering time, small stature, and lobed leaf shape underlie plant fitness in M. laciniatus’ seasonally dry environment, increased plant size is advantageous in a competitive mesic environment replete with herbivores like M. guttatus’. Given that we observed divergent selection between habitats in the direction of species differences, we conclude that adaptation to different microhabitats is an important component of reproductive isolation in this sympatric species pair.  相似文献   

19.
G. J. Lowenberg 《Oecologia》1997,109(2):279-285
Sexual expression in hermaphroditic plants is often a function of environmental factors affecting individuals before or during flowering. I tested for the effects of floral herbivory and lack of pollination in early umbels on the relative proportions of hermaphroditic and staminate (male) flowers produced on later umbels by Sanicula arctopoides, a monocarpic, andromonoecious perennial. Neither floral herbivory or lack of early pollination had a significant effect on the ratio of the two floral morphs, but the probability of producing staminate flowers on late umbels was strongly and positively related to plant size measured just prior to floral initiation and prior to herbivory. Plant size was also negatively correlated with flowering date. I suggest that producing staminate flowers on late umbels should benefit large early-blooming plants more than small late-blooming plants because more mating opportunities occur during the period when these flowers release pollen. Although herbivory did not cause labile changes of sex, whole plant phenotypic gender was still strongly affected by various forms of treatment. Sex-biased herbivory or lack of pollination rendered plants more or less phenotypically male, depending on which tissues were affected. Deer and pollen-feeding mites preferentially remove male tissues while hymenopteran seed predators preferentially remove female tissues. I conclude that combinations of herbivores could have counteracting or compounding effects on plant gender, and these effects may change the rankings of male and female reproductive success within populations. Received: 20 February 1996/Accepted: 30 July 1996  相似文献   

20.
In this paper, we examine how ecological costs of resistance might be manifested through plant relationships with pollinators. If defensive compounds are incorporated into floral structures or if they are sufficiently costly that fewer rewards are offered to pollinators, pollinators may discriminate against more defended plants. Here we consider whether directional selection for increased resistance to herbivores could be constrained by opposing selection through pollinator discrimination against more defended plants. We used artificial selection to create two populations of Brassica rapa plants that had high and low myrosinase concentrations and, consequently, high and low resistance to flea beetle herbivores. We measured changes in floral characters of plants in both damaged and undamaged states from these populations with different resistances to flea beetle attack. We also measured pollinator visitation to plants, including numbers of pollinators and measures of visit quality (numbers of flowers visited and time spent per flower). Damage from herbivores resulted in reduced petal size, as did selection for high resistance to herbivores later in the plant lifetime. In addition, floral display (number of open flowers) was also altered by an interaction between these two effects. Changes in floral traits translated into overall greater use of low-resistance, undamaged plants based on total amount of time pollinators spent foraging on plants. Total numbers of pollinators attracted to plants did not differ among treatments; however, pollinators spent significantly more time per flower on plants from the low-resistance population and tended to visit more flowers on these plants as well. Previous work by other investigators on the same pollinator taxa has shown that longer visit times are associated with greater male and female plant fitness. Because initial numbers of pollinators did not differ between selection regimes, palatability and/or amount of rewards offered by high- and low-resistance populations are likely to be responsible for these patterns. During periods of pollinator limitation, less defended plants may have a selective advantage and pollinator preferences may mediate directional selection imposed by herbivores. In addition, if pollinator preferences limit seed set in highly defended plants, then lower seed set previously attributed to allocation costs of defense may also reflect greater pollinator limitation in these plants relative to less defended plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号