首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Voltage-dependent L-type calcium (Ca) channels are heteromultimeric proteins that are regulated through phosphorylation by cAMP-dependent protein kinase (PKA). We demonstrated that the beta 2 subunit was a substrate for PKA in intact cardiac myocytes through back-phosphorylation experiments. In addition, a heterologously expressed rat beta 2a subunit was phosphorylated at two sites in vitro by purified PKA. This beta 2a subunit contains two potential consensus sites for PKA-mediated phosphorylation at Thr164 and Ser591. However, upon mutation of both of these residues to alanines, the beta 2a subunit remained a good substrate for PKA. The actual sites of phosphorylation on the beta 2a subunit were identified by phosphopeptide mapping and microsequencing. Phosphopeptide maps of a bacterially expressed beta 2a subunit demonstrated that this subunit was phosphorylated similarly to the beta 2 subunit isolated from heart tissue and that the phosphorylation sites were contained in the unique C-terminal region. Microsequencing identified three serine residues, each of which conformed to loose consensus sites for PKA-mediated phosphorylation. Mutation of these residues to alanines resulted in the loss of the PKA-mediated phosphorylation of the beta 2a subunit. The results suggest that phosphorylation of the beta 2a subunit by PKA occurs at three loose consensus sites for PKA in the C-terminus and not at either of the two strong consensus sites for PKA. The results also highlight the danger of assuming that consensus sites represent actual sites of phosphorylation. The actual sites of PKA-mediated phosphorylation are conserved in most beta 2 subunit isoforms and thus represent potential sites for regulation of channel activity. The sites phosphorylated by PKA are not substrates for protein kinase C (PKC), as the mutated beta 2 subunits lacking PKA sites remained good substrates for PKC.  相似文献   

2.
Small conductance, Ca2+-activated voltage-independent potassium channels (SK channels) are widely expressed in diverse tissues; however, little is known about the molecular regulation of SK channel subunits. Direct alteration of ion channel subunits by kinases is a candidate mechanism for functional modulation of these channels. We find that activation of cyclic AMP-dependent protein kinase (PKA) with forskolin (50 microm) causes a dramatic decrease in surface localization of the SK2 channel subunit expressed in COS7 cells due to direct phosphorylation of the SK2 channel subunit. PKA phosphorylation studies using the intracellular domains of the SK2 channel subunit expressed as glutathione S-transferase fusion protein constructs showed that both the amino-terminal and carboxyl-terminal regions are PKA substrates in vitro. Mutational analysis identified a single PKA phosphorylation site within the amino-terminal of the SK2 subunit at serine 136. Mutagenesis and mass spectrometry studies identified four PKA phosphorylation sites: Ser465 (minor site) and three amino acid residues Ser568, Ser569, and Ser570 (major sites) within the carboxyl-terminal region. A mutated SK2 channel subunit, with the three contiguous serines mutated to alanines to block phosphorylation at these sites, shows no decrease in surface expression after PKA stimulation. Thus, our findings suggest that PKA phosphorylation of these three sites is necessary for PKA-mediated reorganization of SK2 surface expression.  相似文献   

3.
Cardiac L-type Ca(2+) channel is facilitated by protein kinase A (PKA)-mediated phosphorylation. Here, we investigated the role of Ser(1901), a putative phosphorylation site in the carboxy-terminal of rat brain type-II alpha(1C) subunit (rbCII), in the PKA-mediated regulation. Forskolin (3 microM) enhanced Ca(2+) channel currents (I(Ca)) and shifted the activation curve to negative voltages, which were abolished by protein kinase inhibitor. Replacement of Ser(1901) of rbCII by Ala abolished the enhancement of I(Ca) by forskolin but not the shift of the activation curve. These results indicate that Ser(1901) is required for the PKA-mediated enhancement of I(Ca), and that the voltage-dependence of the activation of I(Ca) appears to be modulated via another PKA phosphorylation site.  相似文献   

4.
Vasodilator-stimulated phosphoprotein (VASP), an important substrate of PKA, plays a critical role in remodeling of actin cytoskeleton and actin-based cell motility. However, how PKA accurately transfers extracellular signals to VASP and then how phosphorylation of VASP regulates endothelial cell migration have not been clearly defined. Protein kinase A anchoring proteins (AKAPs) are considered to regulate intracellular-specific signal targeting of PKA via AKAP-mediated PKA anchoring. Thus, our study investigated the relationship among AKAP anchoring of PKA, PKA activity, and VASP phosphorylation, which is to clarify the exact role of VASP and its upstream regulatory mechanism in PKA-dependent migration. Our results show that chemotactic factor PDGF activated PKA, increased phosphorylation of VASP at Ser157, and enhanced ECV304 endothelial cell migration. However, phosphorylation site-directed mutation of VASP at Ser157 attenuated the chemotactic effect of PDGF on endothelial cells, suggesting phosphorylation of VASP at Ser157 promotes PKA-mediated endothelial cell migration. Furthermore, disrupting PKA anchoring to AKAP or PKA activity significantly attenuated the PKA activity, VASP phosphorylation, and subsequent cell migration. Meanwhile, disrupting PKA anchoring to AKAP abolished PDGF-induced lamellipodia formation and special VASP accumulation at leading edge of lamellipodia. These results indicate that PKA activation and PKA-mediated substrate responses in VASP phosphorylation and localization depend on PKA anchoring via AKAP in PDGF-induced endothelial cell migration. In conclusion, AKAP anchoring of PKA is an essential upstream event in regulation of PKA-mediated VASP phosphorylation and subsequent endothelial cell migration, which contributes to explore new methods for controlling endothelial cell migration related diseases and angiogenesis.  相似文献   

5.
Cardiotrophin-1 (CT-1) is a cytokine with antiobesity properties and with a role in lipid metabolism regulation and adipose tissue function. The aim of this study was to analyze the molecular mechanisms involved in the lipolytic actions of CT-1 in adipocytes. Recombinant CT-1 (rCT-1) effects on the main proteins and signaling pathways involved in the regulation of lipolysis were evaluated in 3T3-L1 adipocytes and in mice. rCT-1 treatment stimulated basal glycerol release in a concentration- and time-dependent manner in 3T3-L1 adipocytes. rCT-1 (20 ng/ml for 24 h) raised cAMP levels, and in parallel increased protein kinase (PK)A-mediated phosphorylation of perilipin and hormone sensitive lipase (HSL) at Ser660. siRNA knock-down of HSL or PKA, as well as pretreatment with the PKA inhibitor H89, blunted the CT-1-induced lipolysis, suggesting that the lipolytic action of CT-1 in adipocytes is mainly mediated by activation of HSL through the PKA pathway. In ob/ob mice, acute rCT-1 treatment also promoted PKA-mediated phosphorylation of perilipin and HSL at Ser660 and Ser563, and increased adipose triglyceride lipase (desnutrin) content in adipose tissue. These results showed that the ability of CT-1 to regulate the activity of the main lipases underlies the lipolytic action of this cytokine in vitro and in vivo, and could contribute to CT-1 antiobesity effects.  相似文献   

6.
Histone deacetylases (HDACs) are enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. Recent studies suggest that they are key regulators of many cellular events, including cell proliferation and cancer development. Human class I HDACs possess homology to the yeast RPD3 protein and include HDAC1, HDAC2, HDAC3, and HDAC8. While HDAC1, HDAC2, and HDAC3 have been characterized extensively, almost nothing is known about HDAC8. Here we report that HDAC8 is phosphorylated by cyclic AMP-dependent protein kinase A (PKA) in vitro and in vivo. The PKA phosphoacceptor site of HDAC8 is Ser(39), a nonconserved residue among class I HDACs. Mutation of Ser(39) to Ala enhances the deacetylase activity of HDAC8. In contrast, mutation of Ser(39) to Glu or induction of HDAC8 phosphorylation by forskolin, a potent activator of adenyl cyclase, decreases HDAC8's enzymatic activity. Remarkably, inhibition of HDAC8 activity by hyperphosphorylation leads to hyperacetylation of histones H3 and H4, suggesting that PKA-mediated phosphorylation of HDAC8 plays a central role in the overall acetylation status of histones.  相似文献   

7.
Various cellular signaling pathways induced by nociceptin activation of ORL1 (opioid receptor-like 1 receptor) develop homologous desensitization. Multiple lines of evidence suggest that agonist-induced phosphorylation of serine (Ser)/threonine (Thr) residues at intracellular carboxyl tail leads to homologous desensitization of G protein-coupled receptors. In the present study, we investigated the functional role played by C-terminal Ser/Thr residues in agonist-induced desensitization and phosphorylation of ORL1. In HEK 293 cells expressing wild-type ORL1 and ORL1(CDelta21), which lacks C-terminal 21 amino acids, nociceptin inhibition of adenylate cyclase activity exhibited homologous desensitization after 1 h pretreatment of nociceptin. In contrast, ORL1(CDelta34), which differs with ORL1(CDelta21) by lacking C-terminal Ser(334), Ser(335) and Ser(343) residues, failed to develop agonist-induced desensitization. Point mutant (S343A) ORL1 underwent homologous desensitization after nociceptin pretreatment. Substituting Ser(334) or Ser(335) with alanine greatly impaired nociceptin-induced ORL1 desensitization. In HEK 293 cells expressing double mutant (S334A/S335A) ORL1, nociceptin pretreatment failed to significantly affect the efficacy and potency by which nociceptin inhibits forskolin-stimulated cAMP formation. Mutation of Ser(334) and Ser(335) also greatly reduced nociceptin-induced ORL1 phosphorylation. These results suggest that two C-terminal serine residues, Ser(334) and Ser(335), are required for homologous desensitization and agonist-induced phosphorylation of ORL1.  相似文献   

8.
Phosphorylation of BAD, a pro-apoptotic member of the Bcl-2 protein family, on either Ser112 or Ser136 is thought to be necessary and sufficient for growth factors to promote cell survival. Here we report that Ser155, a site phosphorylated by protein kinase A (PKA), also contributes to cell survival. Ser112 is thought to be the critical PKA target, but we found that BAD fusion proteins containing Ala at Ser112 (S112A) or Ser136 (S136A) or at both positions (S112/136A) were still heavily phosphorylated by PKA in an in vitro kinase assay. BAD became insensitive to phosphorylation by PKA only when both Ser112 and Ser136, or all three serines (S112/136/155) were mutated to alanine. In HEK293 cells, BAD fusion proteins mutated at Ser155 were refractory to phosphorylation induced by elevation of cyclic AMP(cAMP) levels. Phosphorylation of the S112/136A mutant was >90% inhibited by H89, a PKA inhibitor. The S155A mutant induced more apoptosis than the wild-type protein in serum-maintained CHO-K1 cells, and apoptosis induced by the S112/136A mutant was potentiated by serum withdrawal. These data suggest that Ser155 is a major site of phosphorylation by PKA and serum-induced kinases. Like Ser112 and Ser136, phosphorylation of Ser155 contributes to the cancellation of the pro-apoptotic function of BAD.  相似文献   

9.
The platelet receptor for von Willebrand factor (VWF), glycoprotein (GP) Ib-IX, mediates initial platelet adhesion and activation. It is known that the cytoplasmic domain of GPIbbeta is phosphorylated at Ser(166) by cAMP-dependent protein kinase (PKA). To understand the physiological role of GPIbbeta phosphorylation, a GPIb-IX mutant replacing Ser(166) of GPIbbeta with alanine (S166A) and a deletion mutant lacking residues 166-181 of GPIbbeta (Delta165) were constructed. These mutants, expressed in Chinese hamster ovary (CHO) cells, showed an enhanced VWF-binding function compared with wild type GPIb-IX. Treatment of CHO cells expressing wild type GPIb-IX with a PKA inhibitor, PKI, reduced Ser(166) phosphorylation and also enhanced VWF binding to GPIb-IX. Furthermore, cells expressing S166A or Delta165 mutants showed a significantly enhanced adhesion to immobilized VWF under flow conditions. Consistent with the studies in CHO cells, treatment of platelets with PKI enhanced VWF binding to platelets. In contrast, a PKA stimulator, forskolin, reduced VWF binding and VWF-induced platelet agglutination, which was reversed by PKI. Thus, PKA-mediated phosphorylation of GPIbbeta at Ser(166) negatively regulates VWF binding to GPIb-IX and is one of the mechanisms by which PKA mediates platelet inhibition.  相似文献   

10.
PKA signaling is important for the post-translational modification of proteins, especially those in cardiomyocytes involved in cardiac excitation-contraction coupling. PKA activity is spatially and temporally regulated through compartmentalization by protein kinase A anchoring proteins. Cypher/ZASP, a member of PDZ-LIM domain protein family, is a cytoskeletal protein that forms multiprotein complexes at sarcomeric Z-lines. It has been demonstrated that Cypher/ZASP plays a pivotal structural role in the structural integrity of sarcomeres, and several of its mutations are associated with myopathies including dilated cardiomyopathy. Here we show that Cypher/ZASP, interacting specifically with the type II regulatory subunit RIIα of PKA, acted as a typical protein kinase A anchoring protein in cardiomyocytes. In addition, we show that Cypher/ZASP itself was phosphorylated at Ser265 and Ser296 by PKA. Furthermore, the PDZ domain of Cypher/ZASP interacted with the L-type calcium channel through its C-terminal PDZ binding motif. Expression of Cypher/ZASP facilitated PKA-mediated phosphorylation of the L-type calcium channel in vitro. Additionally, the phosphorylation of the L-type calcium channel at Ser1928 induced by isoproterenol was impaired in neonatal Cypher/ZASP-null cardiomyocytes. Moreover, Cypher/ZASP interacted with the Ser/Thr phosphatase calcineurin, which is a phosphatase for the L-type calcium channel. Taken together, our data strongly suggest that Cypher/ZASP not only plays a structural role for the sarcomeric integrity, but is also an important sarcomeric signaling scaffold in regulating the phosphorylation of channels or contractile proteins.  相似文献   

11.
Transient outward K+ currents are particularly important for the regulation of membrane excitability of neurons and repolarization of action potentials in cardiac myocytes. These currents are modulated by PKC (protein kinase C) activation, and the K+- channel subunit Kv4.2 is a major contributor to these currents. Furthermore, the current recorded from Kv4.2 channels expressed in oocytes is reduced by PKC activation. The mechanism underlying PKC regulation of Kv4.2 currents is unknown. In the present study, we determined that PKC directly phosphorylates the Kv4.2 channel protein. In vitro phosphorylation of the intracellular N- and C-termini of Kv4.2 GST (glutathione transferase) tagged fusion protein revealed that the C-terminal of Kv4.2 was phosphorylated by PKC, whereas the N-terminal was not. Amino acid mapping and site-directed mutagenesis revealed that the phosphorylated residues on the Kv4.2 C-terminal were Ser447 and Ser537. A phospho-site-specific antibody showed that phosphorylation at the Ser537 site was increased in the hippocampus in response to PKC activation. Surface biotinylation experiments revealed that mutation to alanine of both Ser447 and Ser537 in order to block phosphorylation at both of the PKC sites increased surface expression compared with wild-type Kv4.2. Electrophysiological recordings of the wild-type and both the alanine and aspartate mutant Kv4.2 channels expressed with KChIP3 (Kv4 channel-interacting protein 3) revealed no significant difference in the half-activation or half-inactivation voltage of the channel. Interestingly, Ser537 lies within a possible ERK (extracellular-signal-regulated kinase)/MAPK (mitogen-activated protein kinase) recognition (docking) domain in the Kv4.2 C-terminal sequence. We found that phosphorylation of Kv4.2 by PKC enhanced ERK phosphorylation of the channel in vitro. These findings suggest the possibility that Kv4.2 is a locus for PKC and ERK cross-talk.  相似文献   

12.
Macroautophagy/autophagy is an evolutionarily conserved pathway that is required for cellular homeostasis, growth and survival. The lysosome plays an essential role in autophagy regulation. For example, the activity of MTORC1, a master regulator of autophagy, is regulated by nutrients within the lysosome. Starvation inhibits MTORC1 causing autophagy induction. Given that MTORC1 is critical for protein synthesis and cellular homeostasis, a feedback regulatory mechanism must exist to restore MTORC1 during starvation. However, the molecular mechanism underlying this feedback regulation is unclear. In this study, we report that starvation activates the lysosomal Ca2+ release channel MCOLN1 (mucolipin 1) by relieving MTORC1's inhibition of the channel. Activated MCOLN1 in turn facilitates MTORC1 activity that requires CALM (calmodulin). Moreover, both MCOLN1 and CALM are necessary for MTORC1 reactivation during prolonged starvation. Our data suggest that lysosomal Ca2+ signaling is an essential component of the canonical MTORC1-dependent autophagy pathway and MCOLN1 provides a negative feedback regulation of MTORC1 to prevent excessive loss of MTORC1 function during starvation. The feedback regulation may be important for maintaining cellular homeostasis during starvation, as well as many other stressful or disease conditions.  相似文献   

13.
The regulation of PBC protein function through subcellular distribution is a crucial evolutionarily conserved mechanism for appendage patterning. We investigated the processes controlling PBX1 nuclear export. Here we show that in the absence of MEINOX proteins nuclear export is not a default pathway for PBX1 subcellular localization. In different cell backgrounds, PBX1 can be imported or exported from the nucleus independently of its capacity to interact with MEINOX proteins. The cell context-specific balance between nuclear export and import of PBX1 is controlled by the PBC-B domain, which contains several conserved serine residues corresponding to phosphorylation sites for Ser/Thr kinases. PBX1 subcellular localization correlates with the phosphorylation state of these residues whose dephosphorylation induces nuclear export. Protein kinase A (PKA) specifically phosphorylates PBX1 at these serines, and stimulation of endogenous PKA activity in vivo blocks PBX1 nuclear export in distal limb mesenchymal cells. Our results reveal a novel mechanism for the control of PBX1 nuclear export in addition to the absence of MEINOX protein, which involves the inhibition of PKA-mediated phosphorylation at specific sites within the PBC-B domain.  相似文献   

14.
The varitint-waddler phenotype in mice is caused by gain-of-function mutations in mucolipin-3 (MCOLN3), a member of the mucolipin family of ion channels. These mice are characterized by defects in pigmentation, hearing loss and vestibular defects, suggesting that MCOLN3 might play a role in melanosome trafficking and hair cell maturation. Recent evidence has shown that MCOLN3 is a Ca2+–permeable channel and its activity is regulated by pH. Here we show that MCOLN3 primarily localizes to early and late endosomes in human epithelial cells. This distribution at the less acidic portions of the endocytic pathway is consistent with the reported inactivation of the channel by low pH. Furthermore, overexpression of MCOLN3 causes dramatic alterations in the endosomal pathway, including enlargement of Hrs-positive endosomes, delayed degradation of epidermal growth factor (EGF) and EGF receptor (EGFR) and defective autophagosome maturation, whereas depletion of endogenous MCOLN3 enhances EGFR degradation. Finally, we found that endosomal pH is higher in cells overexpressing MCOLN3 and propose a model in which Ca2+ release from endosomes mediated by MCOLN3 might be important for efficient endosomal acidification. Therefore, MCOLN3 is a novel Ca2+ channel that plays a crucial role in the regulation of cargo trafficking along the endosomal pathway.  相似文献   

15.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine synthesis. Its activity is controlled by PACAP, acutely by phosphorylation at Ser40 and chronically by protein synthesis. Using bovine adrenal chromaffin cells we found that PACAP, acting via the continuous activation of PACAP 1 receptors, sustained the phosphorylation of TH at Ser40 and led to TH activation for up to 24 h in the absence of TH protein synthesis. The sustained phosphorylation of TH at Ser40 was not mediated by hierarchical phosphorylation of TH at either Ser19 or Ser31. PACAP caused sustained activation of PKA, but did not sustain activation of other protein kinases including ERK, p38 kinase, PKC, MAPKAPK2 and MSK1. The PKA inhibitor H89 substantially inhibited the acute and the sustained phosphorylation of TH mediated by PACAP. PACAP also inhibited the activity of PP2A and PP2C at 24 h. PACAP therefore sustained TH phosphorylation at Ser40 for 24 h by sustaining the activation of PKA and causing inactivation of Ser40 phosphatases. The PKA activator 8-CPT-6Phe-cAMP also caused sustained phosphorylation of TH at Ser40 that was inhibited by the PKA inhibitor H89. Using cyclic AMP agonist pairs we found that sustained phosphorylation of TH was due to both the RI and the RII isotypes of PKA. The sustained activation of TH that occurred as a result of TH phosphorylation at Ser40 could maintain the synthesis of catecholamines without the need for further stimulus of the adrenal cells or increased TH protein synthesis.  相似文献   

16.
Proinflammatory prostaglandin E2 is known to sensitize sensory neurons to noxious stimuli. This sensitization is mediated by the cAMP-dependent protein kinase (PKA) signal pathway. The capsaicin receptor TRPV1, a non-selective cation channel of sensory neurons involved in the sensation of inflammatory pain, is a target of PKA-mediated phosphorylation. Our goal was to investigate the influence of PKA on Ca(2+)-dependent desensitization of capsaicin-activated currents. By using site-directed mutagenesis, we created point mutations at PKA consensus sites and studied wild-type and mutant channels transiently expressed in HEK293t cells under whole-cell voltage clamp. We found that forskolin, a stimulator of adenylate cyclase, decreased desensitization of TRPV1. The selective PKA inhibitor H89 inhibited this effect. Mimicking phosphorylation at PKA consensus sites by replacing Ser-6, Ser-116, Thr-144, Thr-370, Ser-502, Ser-774, or Ser-820 with aspartate resulted in five mutations (S116D, T144D, T370D, S774D, and S820D) that exhibited decreased desensitization as well. However, disrupting phosphorylation by replacing respective sites with alanine resulted in four mutations (S6A, T144A, T370A, and S820A) with desensitization properties resembling those of the aspartate mutations. Significant changes in relative permeabilities for Ca2+ over Na+ or in capsaicin sensitivity could not explain changes in desensitization properties of mutant channels. In mutations S116A, S116D, T370A, and T370D, pretreatment of cells with forskolin did not reduce desensitization as compared with wild-type and other mutant channels. We conclude that Ser-116 and possibly Thr-370 are the most important residues involved in the mechanism of PKA-dependent reduction of desensitization of capsaicin-activated currents.  相似文献   

17.
We investigated regulation of the type 1 isoform of the Na(+)/H(+) exchanger by phosphorylation. Four specific groups of serine and threonine residues in the regulatory carboxyl-terminal tail were mutated to alanine residues: group 1, S693A; group 2, T718A and S723A/S726A/S729A; group 3, S766A/S770A/S771A; and group 4, T779A and S785A. The proteins were expressed in Na(+)/H(+) exchanger-deficient cells, and the activity was characterized. All of the mutants had proper expression, localization, and normal basal activity relative to wild type NHE1. Sustained intracellular acidosis was used to activate NHE1 via an ERK-dependent pathway that could be blocked with the MEK inhibitor U0126. Immunoprecipitation of (32)P-labeled Na(+)/H(+) exchanger from intact cells showed that sustained intracellular acidosis increased Na(+)/H(+) exchanger phosphorylation in vivo. This was blocked by U0126. The Na(+)/H(+) exchanger activity of mutants 1 and 2 was stimulated similar to wild type Na(+)/H(+) exchanger. Mutant 4 showed a partially reduced level of activation. However, mutant 3 was not stimulated by sustained intracellular acidosis, and loss of stimulation of activity correlated to a loss of sustained acidosis-mediated phosphorylation in vivo. Mutation of the individual amino acids within mutant 3, Ser(766), Ser(770), and Ser(771), showed that Ser(770) and Ser(771) are responsible for mediating increases in NHE1 activity through sustained acidosis. Both intact Ser(770) and Ser(771) were required for sustained acidosis-mediated activation of NHE1. Our results suggest that amino acids Ser(770) and Ser(771) mediate ERK-dependent activation of the Na(+)/H(+) exchanger in vivo.  相似文献   

18.
L-type, voltage-gated Ca2+ channels (CaL) play critical roles in brain and muscle cell excitability. Here we show that currents through heterologously expressed neuronal and smooth muscle CaL channel isoforms are acutely potentiated following alpha5beta1 integrin activation. Only the alpha1C pore-forming channel subunit is critical for this process. Truncation and site-directed mutagenesis strategies reveal that regulation of Cav1.2 by alpha5beta1 integrin requires phosphorylation of alpha1C C-terminal residues Ser1901 and Tyr2122. These sites are known to be phosphorylated by protein kinase A (PKA) and c-Src, respectively, and are conserved between rat neuronal (Cav1.2c) and smooth muscle (Cav1.2b) isoforms. Kinase assays are consistent with phosphorylation of these two residues by PKA and c-Src. Following alpha5beta1 integrin activation, native CaL channels in rat arteriolar smooth muscle exhibit potentiation that is completely blocked by combined PKA and Src inhibition. Our results demonstrate that integrin-ECM interactions are a common mechanism for the acute regulation of CaL channels in brain and muscle. These findings are consistent with the growing recognition of the importance of integrin-channel interactions in cellular responses to injury and the acute control of synaptic and blood vessel function.  相似文献   

19.
Negative regulation of Raf-1 by phosphorylation of serine 621.   总被引:13,自引:6,他引:7       下载免费PDF全文
The elevation of cyclic AMP (cAMP) levels in the cell downregulates the activity of the Raf-1 kinase. It has been suggested that this effect is due to the activation of cAMP-dependent protein kinase (PKA), which can directly phosphorylate Raf-1 in vitro. In this study, we confirmed this hypothesis by coexpressing Raf-1 with the constitutively active catalytic subunit of PKA, which could fully reproduce the inhibition previously achieved by cAMP. PKA-phosphorylated Raf-1 exhibits a reduced affinity for GTP-loaded Ras as well as impaired catalytic activity. As the binding to GTP-loaded Ras induces Raf-1 activation in the cell, we examined which mechanism is required for PKA-mediated Raf-1 inhibition in vivo. A Raf-1 point mutant (RafR89L), which is unable to bind Ras, as well as the isolated Raf-1 kinase domain were still fully susceptible to inhibition by PKA, demonstrating that the phosphorylation of the Raf-1 kinase suffices for inhibition. By the use of mass spectroscopy and point mutants, PKA phosphorylation site was mapped to a single site in the Raf-1 kinase domain, serine 621. Replacement of serine 621 by alanine or cysteine or destruction of the PKA consensus motif by changing arginine 618 resulted in the loss of catalytic activity. Notably, a mutation of serine 619 to alanine did not significantly affect kinase activity or regulation by activators or PKA. Changing serine 621 to aspartic acid yielded a Raf-1 protein which, when expressed to high levels in Sf-9 insect cells, retained a very low inducible kinase activity that was resistant to PKA downregulation. The purified Raf-1 kinase domain displayed slow autophosphorylation of serine 621, which correlated with a decrease in catalytic function. The Raf-1 kinase domain activated by tyrosine phosphorylation could be downregulated by PKA. Specific removal of the phosphate residue at serine 621 reactivated the catalytic activity. These results are most consistent with a dual role of serine 621. On the one hand, serine 621 appears essential for catalytic activity; on the other hand, it serves as a phosphorylation site which confers negative regulation.  相似文献   

20.
A naturally occurring ACTH receptor [melanocortin 2 receptor (MC2R)] mutation (F278C) has been identified in a subject with ACTH-independent Cushing's syndrome. Functional characterization of this mutant receptor reveals that it is associated with elevated basal cAMP accumulation when compared with wild-type receptor-expressing cell lines. Dose responsiveness is similar between wild-type and mutant receptors in cell lines expressing similar numbers of binding sites. In view of the location of this mutation in the C-terminal tail of the MC2R, desensitization and internalization were investigated and found to be impaired. Inhibition of protein kinase A by H89 blocks wild-type MC2R desensitization and also results in increased basal activity, as does alanine substitution of Ser 280 in the C-terminal tail. Alanine substitution of Ser 208, the consensus protein kinase A phosphorylation target in the third cytoplasmic loop also results in a reduction in desensitization without significant change in basal activity or internalization. These findings suggest a novel mechanism is involved in the apparently constitutive activation of the MC2R in which failure of desensitization appears to be associated with enhanced basal receptor activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号