首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Site-directed nuclease digestion and nonsense mutations of the Escherichia coli metG gene were used to produce a series of C-terminal truncated methionyl-tRNA synthetases. Genetic complementation studies and characterization of the truncated enzymes establish that the methionyl-tRNA synthetase polypeptide (676 residues) can be reduced to 547 residues without significant effect on either the activity or the stability of the enzyme. The truncated enzyme (M547) appears to be similar to a previously described fully active monomeric from of 64,000 Mr derived from the native homodimeric methionyl-tRNA synthetase (2 x 76,000 Mr) by limited trypsinolysis in vitro. According to the crystallographic three-dimensional structure at 2.5 A resolution of this trypsin-modified enzyme, the polypeptide backbone folds into two domains. The former, the N-domain, contain a crevice that is believed to bind ATP. The latter, the C-domain, has a 28 C-residue extension (520 to 547), which folds back, toward the N-domain and forms an arm linking the two domains. This study shows that upon progressive shortening of this C-terminal extension, the enzyme thermostability decreases. This observation, combined with the study of several point mutations, allows us to propose that the link made by the C-terminal arm of M547 between its N and C-terminal domains is essential to sustain an active enzyme conformation. Moreover, directing point mutations in the 528-533 region, which overhangs the putative ATP-binding site, demonstrates that this part of the C-terminal arm participates also in the specific complexation of methionyl-tRNA synthetase with its cognate tRNAs.  相似文献   

2.
tRNA recognition site of Escherichia coli methionyl-tRNA synthetase   总被引:5,自引:0,他引:5  
O Leon  L H Schulman 《Biochemistry》1987,26(17):5416-5422
We have previously shown that anticodon bases are essential for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase (MetRS) [Schulman, L. H., & Pelka, H. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6755-6759] and that the enzyme tightly binds to C34 at the wobble position of E. coli initiator methionine tRNA (tRNAfMet) [Pelka, H., & Schulman, L. H. (1986) Biochemistry 25, 4450-4456]. We have also previously demonstrated that an affinity labeling derivative of tRNAfMet can be quantitatively cross-linked to the tRNA binding site of MetRS [Valenzuela, D., & Schulman, L. H. (1986) Biochemistry 25, 4555-4561]. Here, we have determined the site in MetRS which is cross-linked to the anticodon of tRNAfMet, as well as the location of four additional cross-links. Only a single peptide, containing Lys465, is covalently coupled to C34, indicating that the recognition site for the anticodon is close to this sequence in the three-dimensional structure of MetRS. The D loop at one corner of the tRNA molecule is cross-linked to three peptides, containing Lys402, Lys439, and Lys596. The 5' terminus of the tRNA is cross-linked to Lys640, near the carboxy terminus of the enzyme. Since the 3' end of tRNAfMet is positioned close to the active site in the N-terminal domain [Hountondji, C., Blanquet, S., & Lederer, F. (1985) Biochemistry 24, 1175-1180], this result indicates that the carboxy ends of the two polypeptide chains of native dimeric MetRS are folded back toward the N-terminal domain of each subunit.  相似文献   

3.
In Escherichia coli, the free amino group of the aminoacyl moiety of methionyl-tRNA(fMet) is specifically modified by a transformylation reaction. To identify the nucleotides governing the recognition of the tRNA substrate by the formylase, initiator tRNA(fMet) was changed into an elongator tRNA with the help of an in vivo selection method. All the mutations isolated were in the tRNA acceptor arm, at positions 72 and 73. The major role of the acceptor arm was further established by the demonstration of the full formylability of a chimaeric tRNA(Met) containing the acceptor stem of tRNA(fMet) and the remaining of the structure of tRNA(mMet). In addition, more than 30 variants of the genes encoding tRNA(mMet) or tRNA(fMet) have been constructed, the corresponding mutant tRNA products purified and the parameters of the formylation reaction measured. tRNA(mMet) became formylatable by the only change of the G1.C72 base-pair into C1-A72. It was possible to render tRNA(mMet) as good a substrate as tRNA(fMet) for the formylase by the introduction of a limited number of additional changes in the acceptor stem. In conclusion, A73, G2.C71, C3.G70 and G4.C69 are positive determinants for the specific processing of methionyl-tRNA(fMet) by the formylase while the occurrence of a G.C or C.G base-pair between positions 1 and 72 acts as a major negative determinant. This pattern appears to account fully for the specificity of the formylase and the lack of formylation of any aminoacylated tRNA, excepting the methionyl-tRNA(fMet).  相似文献   

4.
O Leon  L H Schulman 《Biochemistry》1987,26(22):7113-7121
A new method has been developed to couple a lysine-reactive cross-linker to the 4-thiouridine residue at position 8 in the primary structure of the Escherichia coli initiator methionine tRNA (tRNAfMet). Incubation of the affinity-labeling tRNAfMet derivative with E. coli methionyl-tRNA synthetase (MetRS) yielded a covalent complex of the protein and nucleic acid and resulted in loss of amino acid acceptor activity of the enzyme. A stoichiometric relationship (1:1) was observed between the amount of cross-linked tRNA and the amount of enzyme inactivated. Cross-linking was effectively inhibited by unmodified tRNAfMet, but not by noncognate tRNAPhe. The covalent complex was digested with trypsin, and the resulting tRNA-bound peptides were purified from excess free peptides by anion-exchange chromatography. The tRNA was then degraded with T1 ribonuclease, and the peptides bound to the 4-thiouridine-containing dinucleotide were purified by high-pressure liquid chromatography. Two major peptide products were isolated plus several minor peptides. N-Terminal sequencing of the peptides obtained in highest yield revealed that the 4-thiouridine was cross-linked to lysine residues 402 and 439 in the primary sequence of MetRS. Since many prokaryotic tRNAs contain 4-thiouridine, the procedures described here should prove useful for identification of peptide sequences near this modified base when a variety of tRNAs are bound to specific proteins.  相似文献   

5.
Anticodon sequence mutants of Escherichia coli initiator tRNA initiate protein synthesis with codons other than AUG and amino acids other than methionine. Because the anticodon sequence is, in many cases, important for recognition of tRNAs by aminoacyl-tRNA synthetases, the mutant tRNAs are aminoacylated in vivo with different amino acids. The activity of a mutant tRNA in initiation in vivo depends on (i) the level of expression of the tRNA, (ii) the extent of aminoacylation of the tRNA, (iii) the extent of formylation of the aminoacyl-tRNA to formylaminoacyl-tRNA (fAA-tRNA), and (iv) the affinity of the fAA-tRNA for the initiation factor IF2 and the ribosome. Previously, using E. coli overproducing aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, or IF2, we identified the steps limiting the activity in initiation of mutant tRNAs aminoacylated with glutamine and valine. Here, we have identified the steps limiting the activity of mutant tRNAs aminoacylated with isoleucine and phenylalanine. The combined results of experiments involving a variety of initiation codons (AUG, UAG, CAG, GUC, AUC, and UUC) provide support to the hypothesis that the ribosome.fAA-tRNA complex can act as an intermediate in initiation of protein synthesis. Comparison of binding affinities of various fAA-tRNAs (fMet-, fGln-, fVal-, fIle-, and fPhe-tRNAs) to IF2 using surface plasmon resonance supports the idea that IF2 can act as a carrier of fAA-tRNA to the ribosome. Other results suggest that the C1xA72 base pair mismatch, unique to eubacterial and organellar initiator tRNAs, may also be important for the binding of fAA-tRNA to IF2.  相似文献   

6.
G Ghosh  H Pelka  L H Schulman 《Biochemistry》1990,29(9):2220-2225
We have previously shown that the anticodon of methionine tRNAs contains most, if not all, of the nucleotides required for specific recognition of tRNA substrates by Escherichia coli methionyl-tRNA synthetase [Schulman, L. H., & Pelka, H. (1988) Science 242, 765-768]. Previous cross-linking experiments have also identified a site in the synthetase that lies within 14 A of the anticodon binding domain [Leon, O., & Schulman, L. H. (1987) Biochemistry 26, 5416-5422]. In the present work, we have carried out site-directed mutagenesis of this domain, creating conservative amino acid changes at residues that contain side chains having potential hydrogen-bond donors or acceptors. Only one of these changes, converting Trp461----Phe, had a significant effect on aminoacylation. The mutant enzyme showed an approximately 60-100-fold increase in Km for methionine tRNAs, with little or no change in the Km for methionine or ATP or in the maximal velocity of the aminoacylation reaction. Conversion of the adjacent Pro460 to Leu resulted in a smaller increase in Km for tRNA(Mets), with no change in the other kinetic parameters. Examination of the interaction of the mutant enzymes with a series of tRNA(Met) derivatives containing base substitutions in the anticodon revealed sequence-specific interactions between the Phe461 mutant and different anticodons. Km values were highest for tRNA(mMet) derivatives containing the normal anticodon wobble base C. Base substitutions at this site decreased the Km for aminoacylation by the Phe461 mutant, while increasing the Km for the wild-type enzyme and for the Leu460 mutant to values greater than 100 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Protein synthesis in eukaryotic cytoplasm and in archaebacteria is initiated with methionine, whereas, that in eubacteria and in eukaryotic organelles, such as mitochondria and chloroplasts, is initiated with formylmethionine. In view of this clear distinction, we have investigated whether protein synthesis in the eukaryotic cytoplasm can be initiated with formylmethionine, and, if so, what the consequences are to the cell. For this purpose, we have expressed in an inducible manner the Escherichia coli methionyl-tRNA formyltransferase (MTF) in the cytoplasm of the yeast Saccharomyces cerevisiae. Expression of active MTF, but not of an inactive mutant, leads to formylation of methionine attached to the yeast cytoplasmic initiator tRNA to the extent of about 70%. As a consequence, the yeast strain grows slowly. Coexpression of the E. coli polypeptide deformylase (DEF), which removes the formyl group from the N-terminal formylmethionine in a polypeptide, rescues the slow-growth phenotype, whereas, coexpression of an inactive mutant of DEF does not. These results suggest that the cytoplasmic protein-synthesizing system of yeast, like that of eubacteria, can at least to some extent utilize formylated initiator Met-tRNA to initiate protein synthesis and that initiation of proteins with formylmethionine leads to the slow-growth phenotype. Removal of the formyl group in these proteins by DEF would explain the rescue of the slow-growth phenotype.  相似文献   

8.
E Schmitt  S Blanquet    Y Mechulam 《The EMBO journal》1996,15(17):4749-4758
Formylation of the methionyl moiety esterified to the 3' end of tRNA(f)Met is a key step in the targeting of initiator tRNA towards the translation start machinery in prokaryotes. Accordingly, the presence of methionyl-tRNA(f)Met formyltransferase (FMT), the enzyme responsible for this formylation, is necessary for the normal growth of Escherichia coli. The present work describes the structure of crystalline E.coli FMT at 2.0 A, resolution. The protein has an N-terminal domain containing a Rossmann fold. This domain closely resembles that of the glycinamide ribonucleotide formyltransferase (GARF), an enzyme which, like FMT, uses N-10 formyltetrahydrofolate as formyl donor. However, FMT can be distinguished from GARF by a flexible loop inserted within its Rossmann fold. In addition, FMT possesses a C-terminal domain with a beta-barrel reminiscent of an OB fold. This latter domain provides a positively charged side oriented towards the active site. Biochemical evidence is presented for the involvement of these two idiosyncratic regions (the flexible loop in the N-terminal domain, and the C-terminal domain) in the binding of the tRNA substrate.  相似文献   

9.
The specific formylation of initiator methionyl-tRNA by methionyl-tRNA formyltransferase (MTF) is important for the initiation of protein synthesis in eubacteria such as Escherichia coli. In addition to the determinants for formylation present in the initiator tRNA, the nature of the amino acid attached to the tRNA is also important for formylation. We showed previously that a mutant tRNA aminoacylated with lysine was an extremely poor substrate for formylation. As a consequence, it was essentially inactive in initiation of protein synthesis in E. coli. In contrast, the same tRNA, when aminoacylated with methionine, was a good substrate for formylation and was, consequently, quite active in initiation. Here, we report on the isolation of suppressor mutations in MTF which compensate for the formylation defect of the mutant tRNA aminoacylated with lysine. The suppressor mutant has glycine 178 changed to glutamic acid. Mutants with glycine 178 of MTF changed to aspartic acid, lysine, and leucine were generated and were found to be progressively weaker suppressors. Studies on allele specificity of suppression using different mutant tRNAs as substrates suggest that the Gly178 to Glu mutation compensates for the nature of the amino acid attached to the tRNA. We discuss these results in the framework of the crystal structure of the MTF.fMet-tRNA complex published recently.  相似文献   

10.
A stem and loop RNA domain carrying the methionine anticodon (CAU) was designed from the tRNA(fMet) sequence and produced in vitro. This domain makes a complex with methionyl-tRNA synthetase (Kd = 38(+/- 5) microM; 25 degrees C, pH 7.6, 7 mM-MgCl2). The formation of this complex is dependent on the presence of the cognate CAU anticodon sequence. Recognition of this RNA domain is abolished by a methionyl-tRNA synthetase mutation known to alter the binding of tRNA(Met).  相似文献   

11.
Ma X  Margolin W 《Journal of bacteriology》1999,181(24):7531-7544
In Escherichia coli, FtsZ is required for the recruitment of the essential cell division proteins FtsA and ZipA to the septal ring. Several C-terminal deletions of E. coli FtsZ, including one of only 12 amino acids that removes the highly conserved C-terminal core domain, failed to complement chromosomal ftsZ mutants when expressed on a plasmid. To identify key individual residues within the core domain, six highly conserved residues were replaced with alanines. All but one of these mutants (D373A) failed to complement an ftsZ chromosomal mutant. Immunoblot analysis demonstrated that whereas I374A and F377A proteins were unstable in the cell, L372A, D373A, P375A, and L378A proteins were synthesized at normal levels, suggesting that they were specifically defective in some aspect of FtsZ function. In addition, all four of the stable mutant proteins were able to localize and form rings at potential division sites in chromosomal ftsZ mutants, implying a defect in a function other than localization and multimerization. Because another proposed function of FtsZ is the recruitment of FtsA and ZipA, we tested whether the C-terminal core domain was important for interactions with these proteins. Using two different in vivo assays, we found that the 12-amino-acid truncation of FtsZ was defective in binding to FtsA. Furthermore, two point mutants in this region (L372A and P375A) showed weakened binding to FtsA. In contrast, ZipA was capable of binding to all four stable point mutants in the FtsZ C-terminal core but not to the 12-amino-acid deletion.  相似文献   

12.
Formylation of the initiator methionyl-tRNA (Met-tRNAfMet) in eubacteria is catalyzed by methionyl-tRNA formyltransferase (MTF). Features of the Escherichia coli tRNAfMet that are important for formylation are the base-base mismatch between nucleotides 1 and 72, and the second and third base pairs of the acceptor stem. The base-base mismatch is the most crucial formylation determinant in the E. coli tRNAfMet. However, it is not known whether this feature is also important for formylation of other eubacterial tRNAfMet. We cloned the Pseudomonas aeruginosa MTF gene by complementation of an E. coli MTF mutant strain with a genomic library, and investigated the catalytic properties and substrate specificity of the enzyme. The results show that the P. aeruginosa and E. coli enzymes have comparable affinities for the tRNAfMet and N10-formyltetrahydrofolate (fTHF) substrates. Overproduction of the P. aeruginosa MTF rescued the initiator activity of an E. coli formylation-defective tRNAfMet with a base pair between nucleotides 1 and 72, indicating that the base-base mismatch is utilized by the P. aeruginosa MTF for recognition of the tRNAfMet. Therefore, this feature may be used by MTFs from other eubacteria to distinguish the initiator from elongator tRNAs.  相似文献   

13.
14.
The role of conserved amino acid residues in the polymerase domain of Escherichia coli primase has been studied by mutagenesis. We demonstrate that each of the conserved amino acids Arg146, Arg221, Tyr230, Gly266, and Asp311 is involved in the process of catalysis. Residues Glu265 and Asp309 are also critical because a substitution of each amino acid irreversibly destroys the catalytic activity. Two K229A and M268A mutant primase proteins synthesize only 2-nucleotide products in de novo synthesis reactions under standard conditions. Y267A mutant primase protein synthesizes both full-size and 2-nucleotide RNA, but with no intermediate-size products. From these data we discuss the significant step of the 2-nucleotide primer RNA synthesis by E. coli primase and the role of amino acids Lys229, Tyr267, and Met268 in primase complex stability.  相似文献   

15.
Methionyl–tRNA formyltransferase from Escherichia coli, a monomer of 34kDa, was overexpressed from its cloned gene fmt (Guillon, J.M., Mechulam, Y., Schmitter, J.M., Blanquet, S., and Fayat, G., J. Bacteriol. 174:4294–4301, 1992) and crystallized using ammonium sulphate as precipitant. The crystals are trigonal and have unit cell parameters a = b = 151.0Å, c = 81.8Å. They belong to space group P3221 and diffract to 2.0Å resolution. The structure is being solved by multiple isomorphous replacement. © 1996 Wiley-Liss, Inc.  相似文献   

16.
We show that the structure and/or sequence of the first three base pairs at the end of the amino acid acceptor stem of Escherichia coli initiator tRNA and the discriminator base 73 are important for its formylation by E. coli methionyl-tRNA transformylase. This conclusion is based on mutagenesis of the E. coli initiator tRNA gene followed by measurement of kinetic parameters for formylation of the mutant tRNAs in vitro and function in protein synthesis in vivo. The first base pair found at the end of the amino acid acceptor stem in all other tRNAs is replaced by a C.A. "mismatch" in E. coli initiator tRNA. Mutation of this C.A. to U:A, a weak base pair, or U.G., a mismatch, has little effect on formylation, whereas mutation to C:G, a strong base pair, has a dramatic effect lowering Vmax/Kappm by 495-fold. Mutation of the second basepair G2:C71 to U2:A71 lowers Vmax/Kappm by 236-fold. Replacement of the third base-pair C3:G70 by U3:A70, A3:U70, or G3:C70 lowers Vmax/Kappm by about 67-, 27-, and 30-fold, respectively. Changes in the rest of the acceptor stem, dihydrouridine stem, anticodon stem, anticodon sequence, and T psi C stem have little or no effect on formylation.  相似文献   

17.
The reaction scheme of methionyl-tRNA synthetase from Escherichia coli with the initiator tRNAsMet from E. coli and rabbit liver, respectively, has been resolved. The statistical rate constants for the formation, kR, and for the dissociation, kD, of the 1:1 complex of these tRNAs with the dimeric enzyme have been calculated. Identical kR values of 250 μm?1 s?1 reflect similar behaviour for antico-operative binding of both tRNAsMet to native methionyl-tRNA synthetase. Advantage was taken of the difference in extent of tryptophan fluorescence-quenching induced by the bacterial and mammalian initiator tRNAsMet to measure the mode of exchange of these tRNAs antico-operatively bound to the enzyme. Analysis of the results reveals that antico-operativity does not arise from structural asymmetric assembly of the enzyme subunits. Indeed, both subunits can potentially bind a tRNA molecule. Exchange between tRNA molecules can occur via a transient complex in which both sites are occupied. Either strong and weak sites reciprocate between subunits on the transient complex or occupation of the weak site induces symmetry of this complex. While in the present case, these two alternatives are kinetically indistinguishable, they do account for the observation that, upon increasing the concentration of the competing mammalian tRNA, the rate of exchange of the E. coli initiator tRNAMet is enhanced, due to its faster rate of dissociation from the transient complex. Finally, it has been verified that in the case of the trypsin-modified methionyl-tRNA synthetase which cannot provide more than one binding site for tRNA, exchange of enzymebound bacterial tRNA by mammalian tRNA does proceed to a limiting rate independent of the mammalian tRNA concentration present in the solution.  相似文献   

18.
D Valenzuela  L H Schulman 《Biochemistry》1986,25(16):4555-4561
Four different structural regions of Escherichia coli tRNAfMet have been covalently coupled to E. coli methionyl-tRNA synthetase (MetRS) by using a tRNA derivative carrying a lysine-reactive cross-linker. We have previously shown that this cross-linking occurs at the tRNA binding site of the enzyme and involves reaction of only a small number of the potentially available lysine residues in the protein [Schulman, L. H., Valenzuela, D., & Pelka, H. (1981) Biochemistry 20, 6018-6023; Valenzuela, D., Leon, O., & Schulman, L. H. (1984) Biochem. Biophys. Res. Commun. 119, 677-684]. In this work, four of the cross-linked peptides have been identified. The tRNA-protein cross-linked complex was digested with trypsin, and the peptides attached to the tRNA were separated from the bulk of the tryptic peptides by anion-exchange chromatography. The tRNA-bound peptides were released by cleavage of the disulfide bond of the cross-linker and separated by reverse-phase high-pressure liquid chromatography, yielding five major peaks. Amino acid analysis indicated that four of these peaks contained single peptides. Sequence analysis showed that the peptides were cross-linked to tRNAfMet through lysine residues 402, 439, 465, and 640 in the primary sequence of MetRS. Binding of the tRNA therefore involves interactions with the carboxyl-terminal half of MetRS, while X-ray crystallographic data have shown the ATP binding site to be located in the N-terminal domain of the protein [Zelwer, C., Risler, J. L., & Brunie, S. (1982) J. Mol. Biol. 155, 63-81].(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
We describe a mutation in rpoD, the gene encoding the sigma 70 subunit of RNA polymerase, which alters the promoter specificity of the holoenzyme in vivo. The mutant sigma causes a substantial and specific increase in the activity of mutant ant and lac promoters with a T.A to C.G substitution at position -12, the first position of the -10 hexamer. The rpoD mutation is a single base-pair substitution causing a Gln----His change at position 437, which is in a domain of conserved region 2.4 that is predicted to form an alpha-helix. Gln437 would lie one turn of the alpha-helix away from Thr440, which was previously implicated in recognition of position -12. The rpoD-QH437 mutation described here lends further support to the model that region 2.4 of sigma is involved in recognition of the 5' end of the -10 hexamer. In addition, two rpoD mutations with non-specific effects on promoter recognition are described.  相似文献   

20.
In eubacteria, the biosynthesis of queuine, a modified base found in the wobble position (#34) of tRNAs coding for Tyr, His, Asp, and Asn, occurs via a multistep pathway. One of the key enzymes in this pathway, tRNA-guanine transglycosylase (TGT), exchanges the genetically encoded guanine at position 34 with a queuine precursor, preQ1. Previous studies have identified a minimal positive RNA recognition motif for Escherichia coli TGT consisting of a stable minihelix that contains a U-G-U sequence starting at the second position of its seven base anticodon loop. Recently, we reported that TGT was capable of recognizing the U-G-U sequence outside of this limited structural context. To further characterize the ability of TGT to recognize the U-G-U sequence in alternate contexts, we constructed mutants of the previously characterized E. coli tRNA(Tyr) minihelix. The U-G-U sequence was shifted to various positions within the anticodon loop of these mutants. Characterization of these analogs demonstrates that in addition to the normal U33G34U35 position, TGT can also recognize the U34G35U36 analog (UGU(+1)). The other analogs were not active. This indicates that the recognition of the U-G-U sequence is not strictly dependent upon its position relative to the stem. In E. coli, the full-length tRNA with a U34G35U36 anticodon sequence is one of the isoacceptors that codes for threonine. We found that TGT is able to recognize tRNA(Thr(UGU)) but only in the absence of a uridine at position 33. U33, an invariant base present in all tRNAs, has been shown to strongly influence the conformation of the anticodon loop of certain tRNAs. We find that mutation of this base confers on TGT the ability to recognize U34G35U36, and suggests that loop conformation affects recognition. The fact that the other analogs were not active indicates that although TGT is capable of recognizing the U-G-U sequence in additional contexts, this recognition is not indiscriminate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号