首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven antagonists of putative neurotransmitters were applied to bulbar respiratory neurons and, for comparison, also to unspecific cells. The antagonists exerted distinct effects when released alone, permitting to draw conclusions about receptor properties of the various cell types. With strychnine, specific antagonist of glycine, excitation prevailed in EI, I and E neurons. With bicuculline, specific antagonist of GABA, excitation preponderated in EI and E cells. About half of the unspecific neurons were activated and the remainder were unresponsive. GDEE (glutamatediethylester), antagonist of glutamate, excited part of the IE neurons and inhibited part of the E units, while the remainder of both types as well as 2 EI cells tested were not affected. With flupentixol, antagonist of dopamine, excitation prevailed in I neurons. About half of the IE and E units remained unaffected, while in the remainder E cells inhibition preponderated over excitation. With yohimbine, an alpha-adrenoceptor blocker, inhibition prevailed in E units. The two EI as well as the majority of the I neurons remained unaffected, with two cells of the latter type being activated. Propranolol, a beta-adrenoceptor blocker, inhibited about half of the E neurons, while the remainder as well as most IE and the 2 EI cells tested were not affected. Cyproheptadine, an antagonist of 5-HT, excited most E neurons. As concerns NE-receptors, those of the alpha-type might be involved in activation of part of the E cells only, whereas all other NE effects (inhibition or activation) are mediated by CNS-specific receptors different from the alpha- and beta-type. 5-HT effects apparently are mediated by two different receptor types.  相似文献   

2.
1. Adipocytes isolated from epididymal fat-pads of fed rats were incubated with different concentrations of glucagon, insulin, adrenaline and adenosine deaminase, and the effects of these agents on the ;initial' activity of acetyl-CoA carboxylase in the cells were studied. 2. Glucagon (at concentrations between 0.1 and 10nm) inhibited acetyl-CoA carboxylase activity. Maximal inhibition was approx. 70% of the ;control' activity in the absence of added hormone, and the concentration of hormone required for half-maximal inhibition was 0.3-0.5nm-glucagon. 3. Incubation of cells with adenosine deaminase resulted in a similar inhibition of acetyl-CoA carboxylase activity. Preincubation of adipocytes with adenosine deaminase did not alter either the sensitivity of carboxylase activity to increasing concentrations of glucagon or the maximal extent of inhibition. 4. Adrenaline inhibited acetyl-CoA carboxylase to the same extent as glucagon. Preincubation of the cells with glucagon did not alter the sensitivity of enzyme activity to adrenaline or the degree of maximal inhibition. 5. Insulin activated the enzyme by 70-80% of ;control' activity. Preincubation of the cells with glucagon did not alter the concentration of insulin required to produce half the maximal stimulatory effect (about 12muunits of insulin/ml). The effects of insulin and glucagon appeared to be mediated completely independently, and were approximately quantitatively similar but opposite. These characteristics resulted in the mutual cancellation of the effects of the two hormones when they were both present at equally effective concentrations. 6. The implications of these findings with regard to current concepts about the mechanism of regulation of acetyl-CoA carboxylase and to the regulation of the enzyme in vivo are discussed.  相似文献   

3.
The purpose of this study was to describe the distribution and activity pattern of respiratory neurons located in the ventrolateral medulla (VLM) of the dog. Spike activity of 129 respiratory neurons was recorded in 23 ketamine-anesthetized spontaneously breathing dogs. Pontamine blue dye was used to mark the location of each neuron. Most VLM neurons displaying respiratory related spike patterns were located in a column related closely to ambigual and retroambigual nuclei. Both inspiratory and expiratory neurons were present with inspiratory units being grouped more rostrally. The predominant inspiratory neuron firing pattern was "late" inspiratory, although eight "early" types were located. All expiratory firing patterns were the late expiratory variety. Each neuron burst pattern was characterized by determining burst duration (BD), spikes per burst (S/B), peak frequency (PF), time to peak frequency (TPF), rate of rise to peak frequency (PF/TPF), and mean frequency. CO2-induced minute ventilation increases were associated with decreases in BD and TPF and increases in PF, S/B, and PF/TPF. In 11 experiments the relative influences of vagotomy and tracheal occlusion on late inspiratory units were compared. Tracheal occlusion increased late inspiratory BD and S/B but did not alter PF/TPF. Vagotomy increased BD and S/B beyond those obtained by tracheal occlusion and, in some neurons, decreased the PF/TPF. We conclude that the location of respiratory units in the VLM of the dog is similar to that in other species, the discharge pattern of VLM respiratory units is similar to those in cat VLM, and vagotomy and tracheal occlusion affect discharge patterns differently.  相似文献   

4.
The receptive field of a sensory neuron is known as that region in sensory space where a stimulus will alter the response of the neuron. We determined the spatial dimensions and the shape of receptive fields of electrosensitive neurons in the medial zone of the electrosensory lateral line lobe of the African weakly electric fish, Gnathonemus petersii, by using single cell recordings. The medial zone receives input from sensory cells which encode the stimulus amplitude. We analysed the receptive fields of 71 neurons. The size and shape of the receptive fields were determined as a function of spike rate and first spike latency and showed differences for the two analysis methods used. Spatial diameters ranged from 2 to 36 mm (spike rate) and from 2.45 to 14.12 mm (first spike latency). Some of the receptive fields were simple consisting only of one uniform centre, whereas most receptive fields showed a complex and antagonistic centre-surround organisation. Several units had a very complex structure with multiple centres and surrounding-areas. While receptive field size did not correlate with peripheral receptor location, the complexity of the receptive fields increased from rostral to caudal along the fish's body.  相似文献   

5.
In experiments on immobilized cats, intra- and extracellular response in tonic type neurons to tones of differing frequencies and intensities were investigated, as well as the organizational pattern of receptive fields in these units. Tonic type neurons were encountered at different cortical layers, but mostly (93% of the total) were located at a depth of 1.0–2.2 mm. Minimum thresholds required for response in these neurons were on average 7.7 dB below that found in neurons generating a phasic reaction in response to a tone. "Tonic" differed from "phasic" neurons in their inferior frequency-discriminative ability, with a Q10 value averaging 4.1±0.4 as against 9.1±0.7 in phasic neurons. Size of receptive fields in tonic neurons (as revealed by occurrence of spike response in these units) was 3.5 times that observed in phasic cells. Length of action potentials in the majority (80%) of tonic neurons was about one and a half times to twice that found in phasic units. Tonic neurons also displayed a high degree of sensitivity to changes in the duration and intensity of acoustic stimulation.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 21, No. 4, July–August, pp. 498–506, 1969.  相似文献   

6.
The effects of water deprivation were investigated in the pattern of response produced by subiculum stimulation in antidromically identified hypothalamic supraoptic neurosecretory cells of lactating rats. In dehydrated animals as compared with the controls, the percentage of neurons responding to subiculum stimulation with an inhibitory action (blockade of antidromic action potential) remained unchanged, although the proportion of differing inhibitory response did alter: numbers of cells with gradually developing inhibitory response increased significantly and fewer cells showed transitory development of inhibition. Inhibitory response emerging as depression of background spike activity showed a quantitative increase, moreover. Plasticity was found to be one distinguishing feature of afferent input from the subiculum to supraoptic nucleus neurosecretory cells and, in particular, a capacity for reorganization under water deprivation.A. A. Ukhtomskii Institute of Physiology, State University, Leningrad. Translated from Neirofiziologiya, Vol. 22, No. 2, pp. 243–249, March–April, 1990.  相似文献   

7.
Effects of subiculum stimulation on spike activity of neurons localized in the supraoptical nucleus (SON) and perinuclear region were studied in experiments on rats; special attention was paid to neurons that did not respond to stimulation of the hypophyseal pedunculus. With rare exception, the SON cells did not respond to subiculum stimulation; 47% of neurons in the perinuclear region were activated after subiculum stimulation, whereas in 15% the frequency of spike activity decreased. Some neurons were found in the perinuclear region that responded to subiculum stimulation by antidromic spike generation.Organization of the studied afferent input to neurons of the supraoptical region and probability of interconnections between investigated structures are discussed.Neirofiziologiya/Neurophysiology, Vol. 25, No. 4, pp. 253–257, July–August, 1993.  相似文献   

8.
Neuropeptide W (NPW) is produced in neurons located in hypothalamus and brain stem, and its receptors are present in the hypothalamus, in particular in the paraventricular nucleus (PVN). Intracerebroventricular (ICV) administration of NPW activated, in a dose-related fashion, the hypothalamic-pituitary-adrenal axis, as determined by plasma corticosterone levels in conscious rats but, at those same doses, did not stimulate the release of oxytocin or vasopressin into the peripheral circulation or alter blood pressure or heart rate. The ability of ICV-administered NPW to stimulate the hypothalamic-pituitary-adrenal axis in conscious male rats was blocked by intravenous pretreatment with a corticotropin-releasing hormone antagonist. This suggested an action of NPW in the parvocellular division of the PVN. Indeed, in hypothalamic slice preparations (whole cell patch recording), bath application of NPW depolarized and increased the spike frequency of the majority of electrophysiologically identified putative neuroendocrine PVN neurons. Effects on membrane potential were maintained in the presence of TTX, suggesting them to be direct postsynaptic actions on these neuroendocrine cells. Our data suggest that endogenous NPW, produced in brain, may play a physiologically relevant role in the neuroendocrine response to stress.  相似文献   

9.
The characteristics of neurons in Area 17 of the visual cortex in cats were investigated by extracellular recording of their activity. Unit responses to flashes modulated by intensity and duration (100 µsec-1 sec) were recorded. Of 80 neurons tested, 67.6% were spontaneously active and 32.4% were silent. The threshold responses of the neurons to flashes varied by 7 logarithmic units. The distribution curve of the cells by response thresholds had one maximum corresponding to an energy of the order of 1–10 lm·sec. The time during which the cells could summate excitation did not exceed a mean value of 34 msec. Depending on the latent periods of the visual cortical neurons they can be divided into three groups. The first group includes neurons responding 20–40 msec after stimulation, the second and third neurons responding after 100–120 and 160–180 msec, respectively. Photic stimulation considerably altered the ratio between the numbers of cells generating spikes with high and low frequency. No correlation was found between the sensitivity of the visual cortical cells to light, the latent period of their response, and the critical time of summation. This shows that the cortex contains many duplicate units which are grouped together on the basis of only one of the functional characteristics of their spike response.Institute of Higher Nervous Activity and Neurophysiology, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 2, No. 2, pp. 173–179, March–April, 1970.  相似文献   

10.
Activity of lumbosacral spinal interneurons was studied during fictitious scratching in decerebrate, immobilized cats. Neurons whose activity changed during fictitious scratching were located in the substantia intermedia lateralis and ventral horn. Among these neurons cells were distinguished whose activity was modulated in rhythm with motor discharges to different muscles (61.6%) and cells which were activated tonically (21.4%) or inhibited tonically (17%). By correlation of activity with discharges to corresponding muscles the rhythmically activated neurons were divided into "aiming" (36.6%) and "scratching" (25%). Neurons whose activity was unchanged during fictitious scratching also were observed. These cells were located mainly in the more dorsal regions of gray matter. Neurons to which wide convergence of excitatory influences from high-threshold cutaneous and muscular afferents was observed were mainly placed in the "aiming" group. "Scratching" neurons, compared with "aiming," more often received inputs only from low-threshold cutaneous or high-threshold muscular afferents. Group Ia interneurons were activated in phase with the corresponding motoneurons. Passive displacement of the limb in a forward direction predominantly inhibited spike activity of the "aiming" and potentiated activity of the "scratching" neurons. The neuronal organization of the spinal scratch generator is discussed on the basis of the results.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 1, pp. 57–66, January–February, 1981.  相似文献   

11.
The human cytomegalovirus (HCMV) IE86 protein induces the human fibroblast cell cycle from G(0)/G(1) to G(1)/S, where cell cycle progression stops. Cells with a wild-type, mutated, or null p53 or cells with null p21 protein were transduced with replication-deficient adenoviruses expressing HCMV IE86 protein or cellular p53 or p21. Even though S-phase genes were activated in a p53 wild-type cell, IE86 protein also induced phospho-Ser(15) p53 and p21 independent of p14ARF but dependent on ATM kinase. These cells did not enter the S phase. In human p53 mutant, p53 null, or p21 null cells, IE86 protein did not up-regulate p21, cellular DNA synthesis was not inhibited, but cell division was inhibited. Cells accumulated in the G(2)/M phase, and there was increased cyclin-dependent kinase 1/cyclin B1 activity. Although the HCMV IE86 protein increases cellular E2F activity, it also blocks cell division in both p53(+/+) and p53(-/-) cells.  相似文献   

12.
A Kawabata  M Sasa  H Ujihara  S Takaori 《Life sciences》1990,47(15):1355-1363
Electrophysiological studies were performed to determine whether or not enkephalin modulates the activities of medial vestibular nucleus (MVN) neurons responding to horizontal pendular rotation using alpha-chloralose anesthetized cats. The effects of microiontophoretically applied drugs were examined in type I and type II neurons identified according to responses to horizontal, sinusoidal rotation; type I and type II neurons showed an increase and decrease in firing with rotation ipsilateral to the recording site and vice versa with contralateral rotation, respectively. Iontophoretic application of enkephalin suppressed spike firing induced by rotation of the animals in type I neuron, but not in type II neuron. The spike firing induced by iontophoretically applied glutamate was also inhibited during the application of enkephalin. The inhibition by enkephalin of both rotation- and glutamate-induced firing was antagonized by naloxone which was given simultaneously. These results suggest that enkephalin acts on MVN type I neuron to inhibit transmission from the vestibule, thereby controlling vestibulo-ocular reflex.  相似文献   

13.
Shen LL  Peng YJ  Wu GQ  Cao YX  Li P 《生理学报》1999,(2):168-174
本文分析了大鼠延头端腹外侧区(RVLM)神经元单位活动与心血管活动的相干性,观察了RVLM区神经元电 对电刺激中脑防御反应区的诱发反应,以及对压力感受性反射的反应,并用FFT对RVLM区神经元自发单位放电和血压波进行频域的相干性分析,以判断是具有心节律。还分析了RVLM区单位放电变异性与心率变异性的相干性。结果显示:RVLM区大多数神经元对电刺激中脑防御反应区呈兴奋反应(67%),70%神经元放电  相似文献   

14.
Summary Responses of neurons in the preoptic area and ventral hypothalamus to conspecific mating calls or white noise bursts were examined in male green treefrogs (Hyla cinerea) during different seasons. In the winter, 34.3% of preoptic neurons and 46.7% of ventral hypothalamic cells demonstrated significant changes in activity level during presentation of a conspecific mating call. In contrast, only 13.3% of preoptic units and 16.7% of ventral hypothalamic cells responded to the white noise. The percentage of preoptic and hypothalamic units responding to the advertisement call did not differ significantly during the summer breeding season. Type I units exhibited a dramatic increase in activity during acoustic stimulation followed by a rapid return to baseline activity levels after stimulus offset. Type II cells showed a robust activity increase during stimulation, but maintained an intermediate activity level after stimulus offset. In the preoptic area, a third response type exhibited suppressed activity during acoustic stimulation. Although seasonal condition did not alter the percentage of acoustically responsive units within either nucleus, the proportion of Type I units in the ventral hypothalamus was greatest during the summer.Abbreviations MC mating call - NS no stimulus - POA preoptic area - VH ventral hypothalamus - WN white noise  相似文献   

15.
Suckling stimuli induce somatodendritic oxytocin (OT) release from supraoptic nucleus (SON) neurons, which raises intranuclear OT concentrations and contributes to the effectiveness of the milk-ejection reflex. To clarify how such changes in OT concentrations modulate the activity of OT neurons, we examined OT effects using whole cell patch-clamp recordings from SON neurons in slices from lactating rats. Progressive increases from extremely low OT concentrations (0.1-10 fM) to high concentrations (0.1-10 nM) induced excitation and subsequent spike frequency reduction (SFR) in OT neurons. Significant effects of OT on firing rates were observed starting at 1 fM, reached peak level from 1 fM to 1 pM before SFR occurred in most neurons. The buildup of OT concentrations progressively promoted depolarization of membrane potential, spike broadening, decreases in spike amplitude, and increases in the rise time of spike afterhyperpolarizations, which were unrelated to firing rate. However, intermittent application of OT (1 fM, 1 pM, and 1 nM, each for 5 min) evoked dose-dependent excitation but not the SFR. Application of 1 pM OT for 40 min simulated the effects of progressively increasing OT concentrations. Vasopressin neurons were also activated by OT but did not show SFR. Consistent with presynaptic loci of OT action, ionotropic glutamate receptor antagonists reduced OT effects on firing rate, whereas bicuculline did not change the excitatory effects. These results suggest that the specific autoregulatory effects of OT, and perhaps other neuropeptides as well, are time and concentration dependent.  相似文献   

16.
Extracellular recordings were used to characterize responses to cutaneous mechanical stimulation of 78 neurons in the rat nucleus submedius (SM). Thirty-nine of these units were activated by some type of cutaneous mechanical stimulation. Eighteen cells were activated exclusively by noxious stimuli. In 13 of these cells, responses were of swift onset and relatively rapid termination following stimulus application. In contrast, in three neurons responses were delayed both in onset and termination, and in two the response was immediate, but the markedly increased evoked activity outlasted stimulus application by 13 min. Receptive fields (RFs) of these nociceptive neurons were generally large, although none were bilateral. Four SM neurons were activated by innocuous stimuli, but their maximal response was obtained only after noxious stimulation. Responses of all of these neurons were of immediate onset and recovery, and their RFs were large (two were bilateral). Twelve SM neurons were activated maximally by innocuous stimuli. Responses of seven of these cells were immediate in onset and termination, while that of three were delayed in both onset and termination. Two of the 12 innocuous-only neurons quickly became unresponsive to repeated stimulus applications, and could be reactivated only after a rest period during which no stimuli were applied. RFs of these units were also generally large, and in three cases were bilateral. Five SM neurons responded by decreasing, or completely ceasing, their firing subsequent to noxious-only (n = 2), or innocuous-only (n = 3) stimulation. Four of these units had large RFs (two were bilateral). The remaining 39 SM neurons could not be activated by any type of mechanical cutaneous stimulation we tried. Electrical stimulation of the ventrolateral orbital cortex (VLO) was employed to examine frontal cortical projections of 21 SM neurons. Ten of these units were activated, although all of them synaptically rather than antidromically, and two were inhibited. There was no clear-cut relationship between neuronal location, physiological type, RF site, or VLO stimulation effects among the 39 SM neurons. These results provide further support for the involvement of SM neurons in nociceptive information signaling, and suggest additionally that the role of the nucleus is not limited to nociception but encompasses a wider range of cutaneous sensations.  相似文献   

17.
Activation of T cells by mAb to the CD3 molecular complex induces the differentiation of many more Ig-secreting cells (ISC) from resting human B cells in bulk cultures than do other modes of polyclonal B cell activation. In the current experiments, a limiting dilution assay was used to demonstrate that this increase in ISC generation reflects an increased frequency of responding B cells. Highly purified B cells were cultured at densities of between 1000 cells and 0.5 cell per microwell with fresh, mitomycin C-treated T cells (T mito) or T cell clones stimulated by immobilized mAb to CD3. After 5 days in culture, the number of wells containing ISC was determined, and the frequency of responding B cells was calculated. The proportion of B cells responding to anti-CD3-stimulated T cells was very large (10.7 +/- 2.8%) and greatly surpassed that induced by other polyclonal activators. B cells cultured with anti-CD3-stimulated T cell clones responded better than did those cultured with T mito. The addition of exogenous IL-2 or IL-6 to cultures supported by activated T mito enhanced the frequency of responding B cells, whereas IL-4 did not increase the generation of ISC and inhibited the augmentation of B cell responses induced by IL-2. Supplementation of cultures with mitomycin C-treated B cells as accessory cells had less of an effect. The addition of both accessory cells and IL-2 markedly increased B cell responsiveness, with precursor frequencies of 60 to 80% noted. In some experiments, cultures were carried out for 7 to 14 days and supernatants were analyzed for IgM, IgG, and IgA secretion. B cells activated by anti-CD3-stimulated T cells produced all three Ig isotypes. When the classes of Ig produced by single B cells were examined, it was observed that the stimulation of individual B cell precursors led to the production of multiple Ig isotypes, suggesting that isotype switching occurs in these cultures. These results demonstrate that under optimum culture conditions, T cells stimulated with immobilized anti-CD3 can activate the majority of human peripheral blood B cells to produce Ig and induce isotype switching by many.  相似文献   

18.
Enkephalin and substance P effects related to trigeminal pain   总被引:3,自引:0,他引:3  
Iontophoretic applications of enkephalin (20-150 nA) reduced the spontaneous firing frequency of nociceptive neurons in the trigeminal nucleus caudalis of decerebrated cats. The response evoked by noxious stimulation (tooth pulp) was gradually inhibited during the 1st minute of application of the opioid and generally remained depressed for 5 min after the current was turned off. These effects of enkephalin were blocked by intravenously or iontophoretically administered naloxone. Nonnociceptive neurons or nociceptive neurons responding to nonnoxious inputs were less frequently inhibited by enkephalin. When tested on nonnociceptive cells, similar applications of substance P usually had little effect. Nociceptive neurons, however, were strongly excited by substance P. This action was not constant and was interrupted by periods of inactivation. Both types of peptide action were similar in temporal aspects. The results suggest a functional interrelationship between enkephalin and substance P in a trigeminal system mediating nociception.  相似文献   

19.
1.Responses of oxygen-sensitive units in the prosomal haemal nerve of Limulus polyphemus were examined while varying the oxygen content of sea water bathing the intercoxal cuticle. 2. When exposed to high oxygen levels these units units maintained a continuous background discharge of spikes. Unit activity was inhibited when oxygen content decreased. Upon reintroduction of oxygen tonic spike discharge resumed. 3. Mechanosensitive units with receptive fields on the prosomal shield or intercoxal cuticle were also present in the haemal nerve. Neither the mechanosensitivity nor the background discharge of these units was affected by changes in oxygen content. 4. It is proposed that the oxygen-sensitive respiratory reflexes of Limulus are an adaption to existence in the tertidal zone. Published observations of the respiratory stress responses of many intertidal animals support this hypothesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号