首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Giardia lamblia, an aerotolerant anaerobe, respires in the presence of oxygen by a flavin, iron-sulfur protein-mediated electron transport system. Glucose appears to be the only sugar catabolized by the Embden-Meyerhof-Parnas and hexose monophosphate pathways, and energy is produced by substrate level phosphorylation. Substrates are incompletely oxidized to CO2, ethanol and acetate by nonsedimentable enzymes. The lack of incorporation of inosine, hypoxanthine, xanthine, formate or glycine into nucleotides indicates an absence of de novo purine synthesis. Only adenine, adenosine, guanine and guanosine are salvaged, and no interconversion of these purines was detected. Salvage of these purines and their nucleosides is accomplished by adenine phosphoribosyltransferase, adenosine hydrolase, guanosine phosphoribosyltransferase and guanine hydrolase. The absence of de novo pyrimidine synthesis was confirmed by the lack of incorporation of bicarbonate, orotate and aspartate into nucleotides, and by the lack of detectable levels of the enzymes of de novo pyrimidine synthesis. Salvage appears to be accomplished by the action of uracil phosphoribosyltransferase, uridine hydrolase, uridine phosphotransferase, cytidine deaminase, cytidine hydrolase, cytosine phosphoribosyltransferase and thymidine phosphotransferase. Nucleotides of uracil may be converted to nucleotides of cytosine by cytidine triphosphate synthetase, but thymidylate synthetase and dihydrofolate reductase activities were not detected. Uptake of pyrmidine nucleosides, and perhaps pyrimidines, appears to be accomplished by carrier-mediated transport, and the common site for uptake of uridine and cytidine is distinct from the site for thymidine. Thymine does not appear to be incorporated into nucleotide pools. Giardia trophozoites appear to rely on preformed lipids rather than synthesizing them de novo.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
1. Both normal cells and cells deficient in hypoxanthine-guanine phosphoribosyltransferase (HPRT) are able to produce adenine and guanine nucleotides from aminoimidazole carboxamide (AICA) or its ribonucleoside (AICAR), but not from formaminoimidazole carboxamide ribonucleoside (FAICAR). 2. The level of purine nucleotide production from AICA in HPRT- cells is at least equal to the production of purine nucleotides from hypoxanthine in normal cells. 3. The concentration of AICA or AICAR at which nucleotide production was half-maximal was between 30 and 100 microM in various cell lines. 4. Adenosine kinase is required to convert AICAR to its nucleotide; adenine phosphoribosyltransferase is required to convert AICA to its nucleotide. Cells lacking either of these enzymes are unable to produce purine nucleotides from the respective precursor. 5. Purine production from AICAR in HPRT- cells is not greatly increased by the addition of formate, folate or leucovorin.  相似文献   

3.
Enzymes of Purine Metabolism in Mycoplasma mycoides subsp. mycoides   总被引:8,自引:8,他引:0       下载免费PDF全文
The major pathways of ribonucleotide biosynthesis in Mycoplasma mycoides subsp. mycoides were proposed previously from studies of its usage of radioactive purines and pyrimidines. To interpret more fully the pattern of purine usage, we have assayed cell-free extracts of this organism for several enzymes associated with the salvage synthesis of purine nucleotides. M. mycoides possessed phosphoribosyltransferases for adenine, guanine, and hypoxanthine, purine nucleoside phosphorylase, GMP reductase, GMP kinase, adenylosuccinate synthetase, and adenylosuccinate lyase. Purine nucleoside kinase and adenosine deaminase were not detected. Examination of kinetic properties and regulation of some of the above enzymes revealed differences between M. mycoides and Escherichia coli. Most notable of these were the greater susceptibility of the enzymes from M. mycoides to inhibition by nucleotides and the more widespread involvement of GMP as an inhibitor. Observations on enzyme activities in vitro allow an adequate explanation of the capacity of guanine to provide M. mycoides with its full requirement for purine nucleotides.  相似文献   

4.
1. The activities of the purine phosphoribosyltransferases (EC 2.4.2.7 and 2.4.2.8) in purine-analogue-resistant mutants of Schizosaccharomyces pombe were checked. An 8-azathioxanthine-resistant mutant lacked hypoxanthine phosphoribosyltransferase, xanthine phosphoribosyltransferase and guanine phosphoribosyltransferase activities (EC 2.4.2.8) and appeared to carry a single mutation. Two 2,6-diaminopurine-resistant mutants retained these activities but lacked adenine phosphoribosyltransferase activity (EC 2.4.2.7). This evidence, together with data on purification and heat-inactivation patterns of phosphoribosyltransferase activities towards the various purines, strongly suggests that there are two phosphoribosyltransferase enzymes for purine bases in Schiz. pombe, one active with adenine, the other with hypoxanthine, xanthine and guanine. 2. Neither growth-medium supplements of purines nor mutations on genes involved in the pathway for new biosynthesis of purine have any influence on the amount of hypoxanthine-xanthine-guanine phosphoribosyltransferase produced by this organism.  相似文献   

5.
To determine the metabolic profiles of purine nucleotides and related compounds in leaves and roots of tea (Camellia sinensis), we studied the in situ metabolic fate of 10 different (14)C-labeled precursors in segments from tea seedlings. The activities of key enzymes in tea leaf extracts were also investigated. The rates of uptake of purine precursors were greater in leaf segments than in root segments. Adenine and adenosine were taken up more rapidly than other purine bases and nucleosides. Xanthosine was slowest. Some adenosine, guanosine and inosine was converted to nucleotides by adenosine kinase and inosine/guanosine kinase, but these compounds were easily hydrolyzed, and adenine, guanine and hypoxanthine were generated. These purine bases were salvaged by adenine phosphoribosyltransferase and hypoxanthine/guanine phosphoribosyltransferase. Salvage activity of adenine and adenosine was high, and they were converted exclusively to nucleotides. Inosine and hypoxanthine were salvaged to a lesser extent. In situ (14)C-tracer experiments revealed that xanthosine and xanthine were not salvaged, although xanthine phosphoribosyltransferase activity was found in tea extracts. Only some deoxyadenosine and deoxyguanosine was salvaged and utilized for DNA synthesis. However, most of these deoxynucleosides were hydrolyzed to adenine and guanine and then utilized for RNA synthesis. Purine alkaloid biosynthesis in leaves is much greater than in roots. In situ experiments indicate that adenosine, adenine, guanosine, guanine and inosine are better precursors than xanthosine, which is a direct precursor of a major pathway of caffeine biosynthesis. Based on these results, possible routes of purine metabolism are discussed.  相似文献   

6.
Growing cultures of Methanobacterium thermoautotrophicum were supplemented with [U-14C]adenosine or [1-14C]adenosine. 7,8-Didemethyl-8-hydroxy-5-deazariboflavin (factor F0) and 7-methylpterin were isolated from the culture medium. Hydrolysis of cellular RNA yielded purine and pyrimidine nucleotides. The ribose side chain of proffered adenosine is efficiently incorporated into cellular adenosine and guanosine nucleotide pools but not into pyrimidine nucleotides. Thus, M. thermoautotrophicum can utilize exogenous adenosine by direct phosphorylation without hydrolysis of the glycosidic bond, and AMP can be efficiently converted to GMP. Factor F0 and 7-methylpterin had approximately the same specific activities as the purine nucleotides. It follows that the ribityl side chain of factor F0 is derived from the ribose side chain of a nucleotide precursor by reduction. The pyrazine ring of methanopterin is formed by ring expansion involving the ribose side chain of the precursor, GTP.Abbreviations Factor F0 8-hydroxy-6,7-didemethyl-5-deazariboflavin - APRT adenine phosphoribosyltransferase - GPRT guanine phosphoribosyltransferase - PRPP phosphoribosylpyrophosphate - HPLC high performance liquid chromatography  相似文献   

7.
The synthesis of the pyrimidine biosynthetic enzymes is repressed by the pyrimidine nucleotide end-products of the pathway. However, purine nucleotides also play a role. In this study, I have measured expression of the pyr genes (pyrA-E) in Salmonella typhimurium strains harbouring mutations that permit manipulation of the intracellular pools of both pyrimidine and purine nucleotides. The results identify the effectory purine compound as being a guanine nucleotide; it is probably GTP, but it may be GDP or GMP. The synthesis of carbamoylphosphate synthase, encoded by pyrA, and particularly dihydroorotase, encoded by pyrC, and dihydroorotate dehydrogenase, encoded by pyrD, is stimulated by the guanine nucleotide, while the synthesis of aspartate transcarbamoylase, encoded by pyrBI, and orotate phosphoribosyltransferase, encoded by pyrE, is inhibited by guanine nucleotides. The regulatory pattern of each pyr gene is discussed in relation to present knowledge on gene structure and regulatory mechanism.  相似文献   

8.
Katahira R  Ashihara H 《Planta》2006,225(1):115-126
To find general metabolic profiles of purine ribo- and deoxyribonucleotides in potato (Solanum tuberosum L.) plants, we looked at the in situ metabolic fate of various 14C-labelled precursors in disks from growing potato tubers. The activities of key enzymes in potato tuber extracts were also studied. Of the precursors for the intermediates in de novo purine biosynthesis, [14C]formate, [2-14C]glycine and [2-14C]5-aminoimidazole-4-carboxyamide ribonucleoside were metabolised to purine nucleotides and were incorporated into nucleic acids. The rates of uptake of purine ribo- and deoxyribonucleosides by the disks were in the following order: deoxyadenosine > adenosine > adenine > guanine > guanosine > deoxyguanosine > inosine > hypoxanthine > xanthine > xanthosine. The purine ribonucleosides, adenosine and guanosine, were salvaged exclusively to nucleotides, by adenosine kinase (EC 2.7.1.20) and inosine/guanosine kinase (EC 2.7.1.73) and non-specific nucleoside phosphotransferase (EC 2.7.1.77). Inosine was also salvaged by inosine/guanosine kinase, but to a lesser extent. In contrast, no xanthosine was salvaged. Deoxyadenosine and deoxyguanosine, was efficiently salvaged by deoxyadenosine kinase (EC 2.7.1.76) and deoxyguanosine kinase (EC 2.7.1.113) and/or non-specific nucleoside phosphotransferase (EC 2.7.1.77). Of the purine bases, adenine, guanine and hypoxanthine but not xanthine were salvaged for nucleotide synthesis. Since purine nucleoside phosphorylase (EC 2.4.2.1) activity was not detected, adenine phosphoribosyltransferase (EC 2.4.2.7) and hypoxanthine/guanine phosphoribosyltransferase (EC 2.4.2.8) seem to play the major role in salvage of adenine, guanine and hypoxanthine. Xanthine was catabolised by the oxidative purine degradation pathway via allantoin. Activity of the purine-metabolising enzymes observed in other organisms, such as purine nucleoside phosphorylase (EC 2.4.2.1), xanthine phosphoribosyltransferase (EC 2.4.2.22), adenine deaminase (EC 3.5.4.2), adenosine deaminase (EC 3.5.4.4) and guanine deaminase (EC 3.5.4.3), were not detected in potato tuber extracts. These results suggest that the major catabolic pathways of adenine and guanine nucleotides are AMP → IMP → inosine → hypoxanthine → xanthine and GMP → guanosine → xanthosine → xanthine pathways, respectively. Catabolites before xanthosine and xanthine can be utilised in salvage pathways for nucleotide biosynthesis.  相似文献   

9.
By measuring the specific activity of nucleotides isolated from ribonucleic acid after the incorporation of (14)C-labeled precursors under various conditions of growth, we have defined the major pathways of ribonucleotide synthesis in Mycoplasma mycoides subsp. mycoides. M. mycoides did not possess pathways for the de novo synthesis of nucleotides but was capable of interconversion of nucleotides. Thus, uracil provided the requirement for both pyrimidine ribonucleotides. Thymine is also required, suggesting that the methylation step is unavailable. No use was made of cytosine. Uridine was rapidly degraded to uracil. Cytidine competed effectively with uracil to provide most of the cytidine nucleotide and also provided an appreciable proportion of uridine nucleotide. In keeping with these results, there was a slow deamination of cytidine to uridine with further degradation to uracil in cultures of M. mycoides. Guanine was capable of meeting the full requirement of the organism for purine nucleotide, presumably by conversion of guanosine 5'-monophosphate to adenosine 5'-monophosphate via the intermediate inosine 5'-monophosphate. When available with guanine, adenine effectively gave a complete provision of adenine nucleotide, whereas hypoxanthine gave a partial provision. Neither adenine nor hypoxanthine was able to act as a precursor for the synthesis of guanine nucleotide. Exogenous guanosine, inosine, and adenosine underwent rapid cleavage to the corresponding bases and so show a pattern of utilization similar to that of the latter.  相似文献   

10.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hyposanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5'-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5'-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed within 10%. Liver cell sap had the highest activities of all purine enzymes except for 5'-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erhthrocytes were devoid of 5'-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue. Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5'-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control od adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte greater than liver greater than fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

11.
1. The purine bases adenine, hypoxanthine and guanine were rapidly incorporated into the nucleotide fraction of Ehrlich ascites-tumour cells in vivo. 2. The reaction of 5'-phosphoribosyl pyrophosphate with adenine phosphoribosyltransferase from ascites-tumour cells (K(m) 6.5-11.9mum) was competitively inhibited by AMP, ADP, ATP and GMP (K(i) 7.5, 21.9, 395 and 118mum respectively). Similarly the reactions of 5'-phosphoribosyl pyrophosphate with both hypoxanthine phosphoribosyltransferase and guanine phosphoribosyltransferase (K(m) 18.4-31 and 37.6-44.2mum respectively) were competitively inhibited by IMP (K(i) 52 and 63.5mum) and by GMP (K(i) 36.5 and 5.9mum). 3. The nucleotides tested as inhibitors did not appreciably compete with the purine bases in the phosphoribosyltransferase reactions. 4. It was postulated that the purine phosphoribosyltransferases of Ehrlich ascites-tumour cells may be effectively separated from the adenine nucleotide pool of these cells.  相似文献   

12.
Bacillus subtilis mutants defective in purine metabolism have been isolated by selecting for resistance to purine analogs. Mutants resistant to 2-fluoroadenine were found to be defective in adenine phosphoribosyltransferase (apt) activity and slightly impaired in adenine uptake. By making use of apt mutants and mutants defective in adenosine phosphorylase activity, it was shown that adenine deamination is an essential step in the conversion of both adenine and adenosine to guanine nucleotides. Mutants resistant to 8-azaguanine, pbuG mutants, appeared to be defective in hypoxanthine and guanine transport and normal in hypoxanthine-guanine phosphoribosyltransferase activity. Purine auxotrophic pbuG mutants grew in a concentration-dependent way on hypoxanthine, while normal growth was observed on inosine as the purine source. Inosine was taken up by a different transport system and utilized after conversion to hypoxanthine. Two mutants resistant to 8-azaxanthine were isolated: one was defective in xanthine phosphoribosyltransferase (xpt) activity and xanthine transport, and another had reduced GMP synthetase activity. The results obtained with the various mutants provide evidence for the existence of specific purine base transport systems. The genetic lesions causing the mutant phenotypes, apt, pbuG, and xpt, have been located on the B. subtilis linkage map at 243, 55, and 198 degrees, respectively.  相似文献   

13.
Giardia lamblia, a flagellated parasitic protozoan and the causative agent of giardiasis, lacks de novo purine biosynthesis and exists on salvage of adenine and guanine by adenine phosphoribosyltransferase and guanine phosphoribosyltransferase. Guanine phosphoribosyltransferase from G. lamblia crude extracts has been purified to apparent homogeneity by Sephacryl S-200 gel filtration followed by C-8-GMP-agarose and 2',3'-GMP-agarose affinity chromatography, resulting in an overall recovery of 77% and a purification of 83,000-fold. The molecular weight of the native enzyme as estimated by gel filtration and isokinetic sucrose gradients was found to be 58,000-63,000, with a subunit molecular weight of approximately 29,000, as shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Mono P chromatofocusing chromatography gives rise to a major activity peak eluting from the column at a pH of 6.75 and two minor activity peaks at pH of 5.3 and 5.2. Hypoxanthine and xanthine can be recognized by the enzyme as substrates but at Km values 20 times higher than that observed with guanine. G. lamblia guanine phosphoribosyltransferase is immunologically distinct from human hypoxanthine-guanine phosphoribosyltransferase and Escherichia coli xanthine-guanine phosphoribosyltransferase, and G. lamblia DNA fragments are incapable of hybridizing with mouse neuroblastoma hypoxanthine-guanine phosphoribosyltransferase DNA or E. coli xanthine phosphoribosyltransferase DNA under relatively relaxed conditions. All evidence presented suggests that G. lamblia guanine phosphoribosyltransferase may be qualified as a potential target for antigiardiasis chemotherapy.  相似文献   

14.
The relative rates of the synthetic, interconversion and catabolic reactions of purine metabolism in chopped mouse cerebrum were studied. The rates of incorporation of [(14)C]adenine and [(14)C]hypoxanthine into purine ribonucleotides were much less than the potential activities of adenine phosphoribosyltransferase and hypoxanthine phosphoribosyltransferase, and the rates of incorporation were stimulated by the addition of guanosine to the incubation mixture. The availability of ribose phosphates may be a limiting factor for the formation of ribonucleotides from purine bases. The rate of incorporation of [(14)C]adenosine into purine ribonucleotides was at least seven- to eight-fold higher than that of adenine. The radioactivity in adenine ribonucleotides synthesized from adenine and hypoxanthine was about 100- and ten-fold respectively higher than that in the radioactive guanine ribonucleotides. The conversion of inosinate into guanine ribonucleotides was probably limited by the amount of inosinate available, and the conversion of adenine ribonucleotides into guanine ribonucleotides was probably limited by the activity of adenylate deaminase. The rate of catabolism of [(14)C]adenosine was low in comparison with its rate of utilization for ribonucleotide synthesis. A fraction of the [(14)C]hypoxanthine was catabolized to xanthine and urate. [(14)C]Guanine was completely converted into xanthine, mostly by the guanine deaminase that was released during incubation of chopped mouse cerebrum.  相似文献   

15.
To evaluate the regulation of adenine nucleotide metabolism in relation to purine enzyme activities in rat liver, human erythrocytes and cultured human skin fibroblasts, rapid and sensitive assays for the purine enzymes, adenosine deaminase (EC 2.5.4.4), adenosine kinase (EC 2.7.1.20), hypoxanthine phosphoribosyltransferase (EC 2.4.28), adenine phosphoribosyltransferase (EC 2.4.2.7) and 5′-nucleotidase (EC 3.1.3.5) were standardized for these tissues. Adenosine deaminase was assayed by measuring the formation of product, inosine (plus traces of hypoxanthine), isolated chromatographically with 95% recovery of inosine. The other enzymes were assayed by isolating the labelled product or substrate nucleotides as lanthanum salts. Fibroblast enzymes were assayed using thin-layer chromatographic procedures because the high levels of 5′-nucleotidase present in this tissue interferred with the formation of LaCl3 salts. The lanthanum and the thin-layer chromatographic methods agreed with-in 10%.Liver cell sap had the highest activities of all purine enzymes except for 5′-nucleotidase and adenosine deaminase which were highest in fibroblasts. Erythrocytes had lowest activities of all except for hypoxanthine phosphoribosyltransferase which was intermediate between the liver and fibroblasts. Erythrocytes were devoid of 5′-nucleotidase activity. Hepatic adenosine kinase activity was thought to control the rate of loss of adenine nucleotides in the tissue.Erythrocytes had excellent purine salvage capacity, but due to the relatively low activity of adenosine deaminase, deamination might be rate limiting in the formation of guanine nucleotides. Fibroblasts, with high levels of 5′-nucleotidase, have the potential to catabolize adenine nucleotides beyond the control of adenosine kinase. The purine salvage capacity in the three tissues was erythrocyte > liver > fibroblasts. Based on purine enzyme activities, erythrocytes offer a unique system to study adenine salvage; fibroblasts to study adenine degradation; and liver to study both salvage and degradation.  相似文献   

16.
Purine deoxynucleoside salvage in Giardia lamblia   总被引:3,自引:0,他引:3  
Giardia lamblia is dependent on the salvage of preformed purines and pyrimidines, including deoxythymidine. Dependence on deoxynucleoside salvage is extremely unusual among eucaryotic cells (Moore, E. C., and Hurlbert, R. B. (1985) Pharmacol & Ther. 27, 167-196). The present study investigates the possibility that giardia lacks ribonucleotide reductase and depends entirely on deoxynucleoside salvage. A ribonucleotide reductase inhibitor, hydroxyurea, at concentrations up to 2 mM had no effect on the growth of giardia. This is 15-20 times the ED50 of hydroxyurea for the protozoans Trypanosoma cruzi, Trypanosoma gambiense, and Leishmania donovani. A lysate of giardia had no detectable ribonucleotide reductase. Although radiolabeled adenine, adenosine, guanine, and guanosine were readily incorporated into RNA by cultured cells, no adenine or adenosine and only trace amounts of guanine and guanosine were detectable in DNA. This is in contrast to deoxynucleosides, where 58% of deoxyadenosine and 10% of deoxyguanosine incorporated into nucleic acid were found in DNA. Phosphorylation of both deoxyadenosine and deoxyguanosine was catalyzed by a cell lysate of giardia when nucleoside kinase co-substrates were included in the assay but not when phosphotransferase co-substrates were present. The absence of detectable ribonucleotide reductase, the failure to incorporate purine nucleobases and nucleosides into DNA to any significant extent, the ready incorporation of deoxynucleosides into DNA, and the demonstration of a purine deoxynucleoside kinase suggest that giardia are dependent on the salvage of exogenous deoxynucleosides.  相似文献   

17.
A leaky guaB mutant of Salmonella typhimurium LT-2 was obtained during a selection for mutants resistant to a combination of the two pyrimidine analogs, 5-fluorouracil and 5-fluorouridine. In the absence of exogenous guanine compounds, the growth rate of this mutant is limited by the endogenous supply of guanine nucleotides due to a defective inosine 5'-monophosphate dehydrogenase. Under these conditions the guanosine 5'-triphosphate pool is about 20% of normal, the cytidine 5'-triphosphate pool is reduced to below 60%, and the uridine 5'-triphosphate pool is slightly elevated. Simultaneously, levels of the pyrimidine biosynthetic enzymes are abnormal: aspartate transcarbamylase, orotate phosphoribosyltransferase, and orotidylic acid decarboxylase levels are increased 4-, 11-, and 3-fold, respectively. Levels of dihydroorotase and dihydroorotate dehydrogenase are decreased to 10 and 20%, respectively. The pyrimidine metabolism of the guaB mutant is restored completely by addition of guanine (or xanthine) to the growth medium. The data indicate purine nucleotide involvement in the regulation of expression of the pyr genes of S. typhimurium.  相似文献   

18.
Changes during growth in the activity of several enzymes involved in purine "salvage", adenine phosphoribosyltransferase (EC 2.4.2.7), guanine phosphoribosyl-transferase (EC 2.4.2.8), hypoxanthine phosphoribosyltransferase (EC 2.4.2.8) and adenosine kinase (EC 2.7.1.20), the enzymes which catalyze the conversion of nucleoside monophosphate to triphosphate, nucleoside monophosphate kinase (EC 2.7.4.4) and nucleoside diphosphate kinase (EC 2.7.4.6), and several degradation enzymes, deoxyribonucleae(s), ribonuclease(s). phosphatase(s), nucleosidase (EC 3.2.2.1), 3'-nucleotidase (EC 3.1.3.6) and 5'-nucleotidase (EC 3.1.3.5) were examined in cells of Catharanthus roseus (L.) G. Don cultured in suspension. In addition, the incorporation of [8-14C] adenine, [8-14C] adenine, [8-14C]hypoxanthine. [8-14C] adenosine and [8-14C]inosine into nucleotides and nucleic acids was also determined using intact cells.
The activities of all purine "salvage" enzymes examined and those of nucleoside monophosphate and diphosphate kinases increased rapidly during the lag phase and decreased during the following cell division and cell expansion phases. The rate of incorporation of adenine, guanine, hypoxanthine, and adenosine into nucleotides and nucleic acids was higher in the lag phase cells than during the following three phases. The highest rate of [8-14C]inosine incorporation was observed in the stationary phase cells. The activity of all degradation enzymes examined decreased when the stationary phase cells were transferred to a new medium.
These results indicated that the increased activity of purine "salvage" enzymes observed in the lag phase cells may contribute to an active purine "salvage" which is required to initiate a subsequent cell division.  相似文献   

19.
6-Thioguanine resistant strains of rat glioma cells were selected spontaneously and after mutagen treatment. Both mutant lines exhibited a severe deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase, increased intracellular concentrations of 5-phosphoribosyl-1-pyrophosphate and rate of the early steps of purine biosynthesis, and an inability to incorporate guanine, but not adenine, into soluble purine nucleotides.  相似文献   

20.
Adenine, guanine, and hypoxanthine were rapidly incorporated into the acid-soluble nucleotide pool and nucleic acids by wild type Novikoff cells. Incorporation followed normal Michaelis-Menten kinetics, but the following evidence indicates that specific transport processes precede the phosphoribosyltransferase reactions and are the rate-limiting step in purine incorporation by whole cells. Cells of an azaguanine-resistant subline of Novikoff cells which lacked hypoxanthine-guanine phosphoribosyltransferase activity and failed to incorporate guanine or hypoxanthine into the nucleotide pool, exhibited uptake of guanine and hypoxanthine by a saturable process. Similarly, wild type cells which had been preincubated in a glucose-free basal medium containing KCN and iodoacetate transported guanine and hypoxanthine normally, although a conversion of these purines to nucleotides did not occur in these cells. The mutant and KCN-iodoacetate treated wild type cells also exhibited countertransport of guanine and hypoxanthine when preloaded with various purines, uracil, and pyrimidine nucleosides. The cells also possess a saturable transport system for uracil although they lack phosphoribosyltransferase activity for uracil. In the absence of phosphoribosylation, none of the substrates was accumulated against a concentration gradient. Thus transport is by facilitated diffusion (nonconcentrative transport). Furthermore, the apparent Km values for purine uptake by untreated wild type and azaguanine-resistant cells were higher and the apparent Vmax values were lower than those for the corresponding phosphoribosyltransferases...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号