首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In a comparative study on 135 compounds of various chemical classes, 30 agents inducing direct nonreparable DNA damage in repair-deficient E. coli failed in reverting strains TA1535, TA1537, TA1538, TA98 and TA100 of S. typhimurium (De Flora et al., 1984b). These compounds were re-assayed in the Ames test using strains TA97 and TA102. A dose-dependent mutagenic response was detected with aminoantipyrine and p-rosaniline in TA97 and with streptomycin and formaldehyde in TA102. p-Rosaniline was the only mutagen requiring metabolic activation. 5 compounds, i.e. o-aminophenol in TA97 and methanol, ethanol, cadmium chloride and cadmium sulfate in TA102, induced a reproducible increase in revertants over controls, but this was less than 2-fold. The remaining 21 chemicals--including amino compounds, aliphatics, aromatics, heterocycles, hydrazine derivatives and inorganics--confirmed their inactivity in the Ames test. Overall data for 135 compounds, comparing the Ames test (7 strains) and the DNA-repair test (3 strains), are re-assessed on the basis of these findings.  相似文献   

2.
Salmonella typhimurium strains which are commonly used in the Ames test for screening potential carcinogens were examined for a number of drug-metabolizing systems. Neither cytochrome P-450 itself nor two activities catalyzed by the cytochrome P-450 system in mammalian cells, i.e., benzpyrene monooxygenase and ethoxycoumarin O-deethylation, could be detected. Nor do these bacterial strains demonstrate any ability to detoxify epoxides by hydrating them or to conjugate p-nitrophenol with glucuronic acid.On the other hand, S. typhimurium strains G46, TA1535, TA100, TA1538 and TA98 contain considerable amounts of acid-soluble thiols, approx. 5–10% of which is glutathione. These bacteria can also enzymatically conjugate glutathione with 1-chloro-2,4-dinitrobenzene (CDNB) and can reduce oxidized glutathione using NADPH as cofactor.Thus, enzymatic and non-enzymatic reaction of immediate carcinogens with thiol groups in S. typhimurium may have a significant effect on the outcome of the Ames test in certain cases.  相似文献   

3.
Treatment of Ames mutagen tester strains with aflatoxin B1 (AFB1) and S9 mix results not only in the production of a poten mutagen, but induces a pathway that leads to the induction of prophages present in all Ames tester strains.Characterization of the prophage induction and mutagenic response following AFB1 treatment showed that plasmid pKM101 dramatically enhances mutagenesis, but suppressed prophage induction. Spontaneous release of phage by TA98 and TA100 was also lower than in TA1535 and TA1538.In addition to mutagenesis and prophage induction, survival of all 4 tester strains was quantitated after AFB1 treatment. The data show that the frameshift tester strains (TA1538 and TA98) are more sensitive to the bactericidal action of AFB1 than the base-pair tester strains (TA1535 and TA100), survival being significantly affected above 100 ng. One of several hypotheses examined was the difference in the number and types of prophages present in base-pair tester strains that are not detectable in the frame-shift tester strains.These data suggest that prophage induction can detect DNA damage that is non-mutagenic; and that it is important to characterize the lysogenic nature of the Ames strains since it may influence the observed histidine revertant rate and the survival of the tester strain.  相似文献   

4.
Cyracure UVR 6105 is a cycloaliphatic epoxy monomer and has both carboxylate and epoxy groups, with the potential for rapid polymerization. It is widely used in industry for the preparation of inks, resins, coatings, and was proposed for incorporation into dental composites. The objective of this study was to determine the mutagenic potential of this chemical related to its metabolite products. Several doses of Cyracure UVR 6105 were dissolved in DMSO and subjected to the Ames Salmonella mutagenicity assay. A metabolic activation system (S9-mix) was used consisting of Arochlor-induced liver S9 homogenate enriched with NADP and glucose-6-phosphate cofactors. In contrast to studies without S9-mix, Cyracure UVR 6105 exhibited enhanced genotoxic activities with strains TA100 and TA1535 in the presence of liver S9-mix. From in vitro metabolism of Cyracure UVR 6105 with S9-mix, as used in the Ames assay, several metabolites were identified. The alcohol metabolite, 3,4-epoxycyclohexylmethanol, containing intact epoxy group was identified in the organic solvent extract. This metabolite was synthesized and proved to be mutagenic against TA100 when assayed in the presence and absence of S9-mix. Results showed that the increased mutagenicity of Cyracure UVR-6105 in the presence of liver enzymes is due to the formation of the mutagenic metabolite 3,4-epoxycyclohexylmethanol.  相似文献   

5.
7 laboratories participated in a collaborative study to evaluate an EPA standard protocol for the Ames test. The study utilized Salmonella typhimurium (strains TA98 and TA100) and 3 metabolic activation levels (0%, 2%, and 10% S9 in the S9 mix). 6 pure chemicals and 2 complex mixtures were tested as coded unknowns. Ability to obtain qualitative results in agreement with published data was less (% agreement) than that reported in an earlier study (% agreement) by de Serres and Ashby (1981) in which each laboratory used its own protocol. The conclusion from analysis of the quantitative data from this interlaboratory Ames study was that both intralaboratory and interlaboratory variations were substantial. Results for the same substance varied by an order of magnitude or more (CV of 115%) when the mutagenic response was measured as the slope of the dose response in revertants/microgram. Taking interlaboratory variation into account, one chemical must be more than an order of magnitude more mutagenic than another (ratio of slopes greater than 10) to have only an even chance of finding a statistically significant difference between the two chemicals at the 5% level. Such large variations must be taken into account when evaluating Ames/Salmonella data.  相似文献   

6.
The genotoxicity of three water bodies, viz. industrial waste water of Aligarh city, ground water pumped out from the industrial area of Aligarh, and river water of Yamuna, downstream of Agra, was carried out by means of Ames plate incorporation test and the Ames fluctuation test. All the test samples were significantly mutagenic in both the testing systems. The ground water and river water samples were subjected to XAD concentration prior to the mutagenicity/genotoxicity testing, while the industrial waste water was used directly. Whereas TA98, TA102 and TA104 strains have been found to be maximally sensitive in the Ames plate incorporation assay conducted for various water samples, TA98 and TA100 strains were the most responsive strains in the Ames fluctuation test. The apparent disparity in the sensitivity patterns of various Ames strains by plate incorporation and fluctuation assays could be attributed to a large extent to the different conventional ways of interpretation of the data in these systems.  相似文献   

7.
Methyl-tert-butylether (MTBE) is an oxygenate widely used in the United States as a motor vehicle fuel additive to reduce emissions and as an octane booster [National Research Council, Toxicological and Performance Aspects of Oxygenated Motor Vehicle Fules, National Academy Press, Washington, DC, 1996]. But it is the potential for MTBE to enter drinking water supplies that has become an area of public concern. MTBE has been shown to induce liver and kidney tumors in rodents but the biochemical process leading to carcinogenesis is unknown. MTBE was previously shown to be non-mutagenic in the standard Ames plate incorporation test with tester strains that detect frame shift (TA98) and point mutations (TA100) and in a suspension assay using TA104, a strain that detects oxidative damage, suggesting a non-genotoxic mechanism accounts for its carcinogenic potential. These strains are deficient in excision repair due to deletion of the uvrB gene. We hypothesized that the carcinogenic activity of MTBE may be dependent upon a functional excision repair system that attempts to remove alkyl adducts and/or oxidative base damage caused by direct interaction of MTBE with DNA or by its metabolites, formaldehyde and tert-butyl alcohol (TBA), established carcinogens that are mutagenic in some Ames strains. To test our hypothesis, the genotoxicity of MTBE-induced DNA alterations was assayed using the standard Ames test with TA102, a strain similar to TA104 in the damage it detects but uvrB + and, therefore, excision repair proficient. The assay was performed (1) with and without Aroclor-induced rat S-9, (2) with and without the addition of formaldehyde dehydrogenase (FDH), and (3) with human S-9 homogenate. MTBE was weakly mutagenic when tested directly and moderately mutagenic with S-9 activation producing between 80 and 200 TA102 revertants/mg of compound. Mutagenicity was inhibited 25%-30% by FDH. TA102 revertants were also induced by TBA and by MTBE when human S-9 was substituted for rat S-9. We conclude that MTBE and its metabolites induce a mutagenic pathway involving oxidation of DNA bases and an intact repair system. These data are significant in view of the controversy surrounding public safety and the environmental release of MTBE and similar fuel additives.  相似文献   

8.
Mutagenicity of a commercially available N-nitrosodiethanolamine (NDELA) and purified NDELA was examined, using Salmonella typhimurium TA100 as a tester strain. Purified NDELA was positive in the presence of liver activation system from either rats or hamsters, but the mutagenicity was completely lost when dimethyl sulfoxide (DMSO) was used as a solvent. In contrast, the commercial NDELA which was chemically of 93.8% purity showed positive mutagenicity without metabolic activation, and the liver activation system and DMSO had no effect on the direct mutagenic activity. These results indicate that an apparent discrepancy among previous findings of several investigators with the mutagenic response of NDELA might be due to an impurity in NDELA samples and the solvent, DMSO.  相似文献   

9.
Benzo[b]phenanthro[2,3-d]thiophene (BPT), and a number of its metabolites, including BPT-3,4-diol, BPT sulfoxide, BPT sulfone, and 3-hydroxyBPT were assessed for their mutagenic activity in Salmonella typhimurium strain TA100, and S. typhimurium base-specific strains TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006. Among the compounds tested in strain TA100, BPT, BPT sulfone, and 3-hydroxyBPT did not show any significant mutagenic response in the presence of S9. In contrast BPT sulfoxide and BPT-3,4-diol (a precursor to the bay-region diol epoxide of BPT) showed significant mutagenic activity in the presence of S9. Surprisingly, BPT sulfoxide was nearly 3.3-fold more mutagenic than BPT-3,4-diol in the presence of S9. BPT sulfoxide also displayed intrinsic mutagenic activity, which was nearly 1.5-fold less than that displayed by BPT-3,4-diol in the presence of S9. In base specific tester strains, BPT sulfoxide was the most active metabolite in strains TA7002, TA7004, and TA7005 with S9 activation. In these strains, BPT-3,4-diol was 2- to 7-fold less mutagenic than BPT sulfoxide in the presence of S9. Only in strain TA7006, BPT-3,4-diol was four-fold more mutagenic than BPT sulfoxide. The fact that BPT sulfoxide is significantly more mutagenic than BPT-3,4-diol in S. typhimurium strain TA100 suggests that the formation of sulfoxide may be the principal pathway for the metabolic activation of BPT to mutagenic products. Based on the results from Tester Strain TA7005, it indicate that BPT and its most mutagenic metabolite BPT sulfoxide induce predominantly CG --> AT transversion, which is observed as the most frequent base substitution mutation of p53 tumor-suppressor gene in human lung cancer.  相似文献   

10.
The Ames test was performed on Salmonella typhimurium, strain TA98, TA100, TA1535, TA1537, TA1538, to evaluate the mutagenic potential of a tar as well as its vapors and aerosols emitted at 250, 350 and 550 degrees C. Two chemical procedures were used: extractions of aromatics for DMSO; elimination of acids, alcohols and phenols. Weak mutagenic activity was demonstrated at each temperature. Then, using only Salmonella typhimurium strains TA98 and TA100, a study was made on the effects of the mutagenic compounds, benzo[a]pyrene, 2-aminoanthracene, nitrofluorene, methyl methanesulfonate and on the vapors and aerosols emitted at 350 degrees C by road-coating tar. For promutagenic compounds, an enhancing effect was observed before an inhibition effect. For direct mutagenic compounds, only the inhibition effect appeared. The mutagenic and/or carcinogenic activity was usually tested on a pure isolated chemical compound.  相似文献   

11.
The possible mutagenicity of the organic solvent dichloromethane was investigated with the mutation test as described by Ames et al. The compound was mutagenic in both tester strains used, namely TA98 and TA100. The administration of rat-liver homogenate did not appear to be essential though it slightly increased the number of mutations.  相似文献   

12.
The genotoxicity of dimethyl sulfoxide (DMSO) was demonstrated by the umu test using Salmonella typhimurium TA1535/pSK1002 carrying the umuC-lacZ fusion gene. The level of beta-galactosidase activity which shows umu gene expression in the test system was dependent on the concentration of DMSO in the culture medium. The maximum beta-galactosidase activity was approximately 3.5 times as high as the background level with 10% of DMSO in the culture medium. The lowest concentration of DMSO required for a response of over twice the background level was approximately 5%. Four structurally related chemicals (acetone, di-n-butylsulfoxide, dimethylsulfide, methylphenylsulfoxide) did not show umu gene expression at their non-toxic doses.  相似文献   

13.
The Ames II bacterial mutagenicity assay is a new version of the standard Ames test for screening chemicals for genotoxic activity. However, the use of plastic micro-titer plates has drawbacks in the case of testing hydrophobic mutagens, since sorptive and other losses make it difficult to control and define the exposure concentrations, and they reduce availability for bacterial uptake or to the S9 enzymes. With passive dosing, a biocompatible polymer such as silicone is loaded with the test compound and acts as a partitioning source. It compensates for any losses and results in stable freely dissolved concentrations. Passive dosing using silicone O-rings was applied in the Ames II assay to measure PAH mutagenicity in strains TA98 and TAMix – a mixture of six different bacterial strains detecting six different base-pair substitutions – after metabolic activation by S9. Initially, 10 PAHs were tested with passive dosing from saturated O-rings, aiming at levels in the test medium close to aqueous solubility. Fluoranthene, pyrene and benzo(a)pyrene were mutagenic in both TA98 and TAMix, whereas benz(a)anthracene was mutagenic in TA98 only. The concentration-dependent mutagenic activity of benzo(a)pyrene was then compared for passive dosing and solvent spiking. With spiking, nominal concentrations greatly exceeded aqueous solubility before mutagenicity was observed, due to sorptive losses and limiting dissolution kinetics. In contrast, the passive dosing concentration-response curves were more reproducible, and shifted towards lower concentrations by several orders of magnitude. This study raises fundamental questions about how to introduce hydrophobic test substances in the Ames II assay with biotransformation, since the measured mutagenicity not only depends on the compound potency but also on its supply, sorption and consumption during the assay.  相似文献   

14.
Haack T  Erdinger L  Boche G 《Mutation research》2001,491(1-2):183-193
Five aromatic nitroso compounds were prepared and their mutagenicity in Salmonella typhimurium strains TA98 and TA100 compared with that of the corresponding hydroxylamines and the previously studied nitroarenes. A remarkable correspondence of the dose-response curves was observed between the nitroso and the respective hydroxylamine compounds. This effect could be observed in TA98 and TA100. It was only marginally dependent on the metabolical activation by rat liver S9-mix. Even the presence of a bulky alkyl substituent either near to the functional group, or far away from it, previously shown to considerably influence the mutagenic properties of nitroarenes, does not remarkably affect the properties of the nitroso and hydroxylamine species. The similarity between the latter two is likely to be due to a fast reduction of the nitrosoarenes to the hydroxylamine species under the test conditions. It seems that enzymes are not responsible for that reduction step, because sterical crowding near the functional group does not influence that behaviour.The test results of the aromatic hydroxylamines bearing a bulky substituent show that there are at least two ways to influence the mutagenicity of an aromatic nitro compound by such a group. A substituent near the functional group (ortho-position) disturbs the enzymatic reduction of the nitro group, because 3-tert-butyl-4-hydroxylaminobiphenyl and its corresponding nitroso compound are highly mutagenic, whereas 3-tert-butyl-4-nitrobiphenyl was previously shown to be inactive even after addition of S9-mix. In contrast, 4'-tert-butyl-4-hydroxylaminobiphenyl with the tert-butyl group "far away" from the hydroxylamino functionality clearly shows decreased mutagenic activity suggesting a different influence of a substituent in that position. In addition, the substance shows only little cell toxicity even at higher concentrations. Both effects could be due to a reduced effective dose of the hydroxylamine in the cells compared to the non-alkylated compound, caused by a faster degradation of the hydroxylamine or a hindered interaction between that substance and the cells.  相似文献   

15.
The products detected in the incubation of 2,4-dinitrotoluene (2,4-DNT) with Salmonella typhimurium strains TA98 and TA98/1,8-DNP6 were nitrosonitrotoluenes, hydroxylaminonitrotoluenes, aminonitrotoluenes and dimethyl dinitroazoxybenzene. The capacity of TA98NR to reduce 2,4-DNT was much lower than that of TA98 and TA98/1,8-DNP6. The bacterial products showed no mutagenic activity in the Ames assay using TA98 and TA100. These results indicate that the lack of mutagenic activity of 2,4-DNT is not due to low reductive metabolism of 2,4-DNT by the bacteria, but to the lack of mutagenic activity of the bacterial reductive products of 2,4-DNT, including dimethyl dinitroazoxybenzene.  相似文献   

16.
The chemotherapeutic agent chlorambucil effectively induces deletion mutations in mouse germ cells. The possibility that this chemical also effectively induces deletion mutations in bacterial DNA was examined using Ames Salmonella tester strains. Chlorambucil was mutagenic only to strains TA102 (hisG428, rfa/pKM101) and YG2975 (hisG46, rfa/pKM101) when S9 mix was absent. Since strain TA102 can detect short deletions, the mutational changes of TA102 induced by this agent without S9 mix were directly determined by the DNA sequencing technique. It turned out that chlorambucil did not induce deletion mutations but preferentially induced AT-TA transversions at the hisG428 site of plasmid pAQ1 of strain TA102. These results caution that the positive results induced by chlorambucil in mutagenicity tests do not necessarily mean the occurrence of deletions.  相似文献   

17.
The Ames Salmonella/microsomal activation mutagenesis assay has been adapted to improve sensitivity to complex hydrocarbon mixtures produced by the refining of petroleum. Extraction of oil samples with dimethyl sulfoxide produces aqueous-compatible solutions that more easily interact with the tester bacteria. These extracts, therefore, produce higher revertant values than do equivalent volumes of oil delivered neat or dissolved in organic solvent. Parallel increases in the liver microsomal S-9 concentration further improve the sensitivity of the assay, allowing detection of mutagenicity in otherwise inactive samples. The effect of increased microsomal fraction from rodent liver is apparently attributable to the higher levels of activating enzymes rather than to the concomitant increase in the overall hydrophobicity of the test system. The modified assay has been used to rank thirteen petroleum-derived oils and a corn oil control for relative mutagenic activity. This ranking closely correlates (r = 0.97) with potency rankings of the same samples previously determined from dermal carcinogenicity bioassays.Abbreviations DMSO dimethyl sulfoxide - S-9 Microsomal fraction from rodent liver - 2-AA 2-aminoanthracene - BaP benzo(a)pyrene - NADP nicotinamide adenine dinucleotide phosphate - DMF dimethyl formamide - EGDE ethylene glycol dimethyl ether  相似文献   

18.
《Mutation Research Letters》1993,301(4):213-222
Alkylhydrazines are important carcinogens. However, they show generally only weak mutagenicity and the activities reported from different laboratories are contradictory. We have developed a sensitive method to detect the mutagenicity of alkylhydrazines. The method is based on a modified preculturing procedures in the Ames test, the emphasis in the modification being a change in the growth period of tester strains. The optimal growth periods were found to be 11 h in Salmonella typhimurium TA100 and 5 h in Salmonella typhimurium TA102. We tested the mutagenic activity of 12 alkylhydrazines; 1,2-dimetehylhydrazine, 1,2-diethylhydrazine, 1,2-dipropylhydrazine. 1,2-dibutylhydrazine, 1,1-dimethylhydrazine, 1,1-diethylhydrazine, 1,1-dipropylhydrazine, 1,1-dibutylhydrazine, methylhydrazine, ethylhydrazine, propylhydrazine, and butylhdyrazine. All 12 alkylhydrazines were clearly mutagenic in Salmonella typhimurium TA102, and 10 hydrazines were mutagenic in Salmonella typhimurium TA100, both in the absence of S9 mix. The mutagenicity was inhibited by the addition of S9 mix or bovine serum albumin. This suggests deactivation of the mutagens by proteins.  相似文献   

19.
On protein solubility in organic solvent   总被引:1,自引:0,他引:1  
Solubility of a model protein, hen egg-white lysozyme, was investigated in a wide range of neat nonaqueous solvents and binary mixtures thereof. All solvents that are protic, very hydrophilic, and polar readily dissolve more than 10 mg/mL of lysozyme (lyophilized from aqueous solution of pH 6.0). Only a marginal correlation was found between the lysozyme solubility in a non-aqueous solvent and the letter's dielectric constant or Hildebrand solubility parameter, and no correlation was observed with the dipole moment. Lysozyme dissolved in dimethyl sulfoxide (DMSO) could be precipitated by adding protein nondissolving co-solvents, although the enzyme had a tendency to form supersaturated solutions in such mixtures. The solubility of lysozyme, both in an individual solvent (1,5-pentanediol) and in binary solvent mixtures (DMSO/acetonitrile), markedly increased when the pH of the enzyme aqueous solution prior to lyophilization was moved away from the proteins's isoelectric point. (c) 1994 John Wiley & Sons, Inc.  相似文献   

20.
The standard Ames tester strains of Salmonella typhimurium contain a number of genetic differences at loci other than his. The fact that these strains contain independently isolated uvrB-bio-gal deletions and rfa mutations implies that these are likely to vary from strain to strain. Since the strains were isolated from different parental stocks of S. typhimurium LT-2, they differ in their ability to metabolize arabinose. Other, unknown differences may exist because the isolation of some of the strains involved ultraviolet and chemical mutagenesis. We have isolated a set of isogenic S. typhimurium strains that contain the relevant genetic markers of the standard Ames tester strains. These strains all contain the same uvrB-bio-gal deletion and the same rfa mutation; they differ only in the nature of their his mutations and in the presence or absence of the plasmid pKM101. We have assessed the responsiveness of these strains to a number of mutagens and conclude that their mutagenic specificities are the same as those of the corresponding Ames strains: TA98, TA100, TA1535, TA1537 and TA1538. Therefore, the specificity of the standard Ames strains with respect to these mutagens is a result solely of the differences in the nature of their his mutations and the effects of pKM101.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号