首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of the B subunits of Escherichia coli heat-labile enterotoxin (LT) to epithelial cells lining the intestines is a critical step for the toxin to invade the host. This mechanism suggests that molecules which possess high affinity to the receptor binding site of the toxin would be good leads for the development of therapeutics against LT. The natural receptor for LT is the complex ganglioside GM1, which has galactose as its terminal sugar. A chemical library targeting a novel hydrophobic pocket in the receptor binding site of LT was constructed based on galactose derivatives and screened for high affinity to the receptor binding site of LT. This screening identified compounds that have 2-3 orders of magnitude higher affinity toward the receptor binding site of LT than the parent compound, galactose. The present findings will pave the way for developing simple and easily synthesizable molecules, instead of complex oligosaccharides, as drugs and/or prophylactics against LT-caused disease.  相似文献   

2.
Minke WE  Roach C  Hol WG  Verlinde CL 《Biochemistry》1999,38(18):5684-5692
Ganglioside GM1 is the natural receptor for cholera toxin (CT) and heat-labile enterotoxin (LT), which are the causative agents of cholera and traveler's diarrhea, respectively. This observation suggests that small molecules interfering with this recognition process may prevent entry of the toxins into intestinal cells, thereby averting their devastating effects. Here, the terminal sugar of ganglioside GM1, galactose, was chosen as a lead in designing such receptor antagonists. Guided by the experimentally determined binding mode of galactose, we selected a "substructure" for searching the Available Chemicals Database, which led to the purchase of 35 galactose derivatives. Initial screening of these compounds in an LT ELISA revealed that 22 of them have a higher affinity for LT than galactose itself. A structurally diverse subset of these galactose derivatives was selected for determination of IC50 values in the LT ELISA and IC50 values in a CT assay, as well as for the determination of Kd's using the intrinsic fluorescence of LT. The best receptor antagonist found in this study was m-nitrophenyl alpha-galactoside with an IC50 of 0.6 (2) mM in the LT ELISA and 0.72 (4) mM in the CT assay, 100-fold lower than both IC50 values of galactose. Careful analysis of our binding data and comparison with crystal structures led to the derivation of correlations between the structure and affinity of the galactose derivatives. These characteristics will be used in the design of a second round of LT and CT receptor antagonists.  相似文献   

3.
Cholera toxin (CT) is an AB5 hexameric protein responsible for the symptoms produced by Vibrio cholerae infection. In the first step of cell intoxication, the B-pentamer of the toxin binds specifically to the branched pentasaccharide moiety of ganglioside GM1 on the surface of target human intestinal epithelial cells. We present here the crystal structure of the cholera toxin B-pentamer complexed with the GM1 pentasaccharide. Each receptor binding site on the toxin is found to lie primarily within a single B-subunit, with a single solvent-mediated hydrogen bond from residue Gly 33 of an adjacent subunit. The large majority of interactions between the receptor and the toxin involve the 2 terminal sugars of GM1, galactose and sialic acid, with a smaller contribution from the N-acetyl galactosamine residue. The binding of GM1 to cholera toxin thus resembles a 2-fingered grip: the Gal(beta 1-3)GalNAc moiety representing the "forefinger" and the sialic acid representing the "thumb." The residues forming the binding site are conserved between cholera toxin and the homologous heat-labile enterotoxin from Escherichia coli, with the sole exception of His 13. Some reported differences in the binding affinity of the 2 toxins for gangliosides other than GM1 may be rationalized by sequence differences at this residue. The CTB5:GM1 pentasaccharide complex described here provides a detailed view of a protein:ganglioside specific binding interaction, and as such is of interest not only for understanding cholera pathogenesis and for the design of drugs and development of vaccines but also for modeling other protein:ganglioside interactions such as those involved in GM1-mediated signal transduction.  相似文献   

4.
The binding specificities of cholera toxin andEscherichia coli heat-labile enterotoxin were investigated by binding of125I-labelled toxins to reference glycosphingolipids separated on thin-layer chromatograms and coated in microtitre wells. The binding of cholera toxin was restricted to the GM1 ganglioside. The heat-labile toxin showed the highest affinity for GM1 but also bound, though less strongly, to the GM2, GD2 and GD1b gangliosides and to the non-acid glycosphingolipids gangliotetraosylceramide and lactoneotetraosylceramide. The infant rabbit small intestine, a model system for diarrhoea induced by the toxins, was shown to contain two receptor-active glycosphingolipids for the heat-labile toxin, GM1 ganglioside and lactoneotetraosylceramide, whereas only the GM1 ganglioside was receptor-active for cholera toxin. Preliminary evidence was obtained, indicating that epithelial cells of human small intestine also contain lactoneotetraosylceramide and similar sequences. By computer-based molecular modelling, lactoneotetraosylceramide was docked into the active site of the heat-labile toxin, using the known crystal structure of the toxin in complex with lactose. Interactions which may explain the relatively high toxin affinity for this receptor were found.Abbreviations CT cholera toxin - CT-B B-subunits of cholera toxin - LT Escherichia coli heat-labile enterotoxin - hLT humanEscherichia coli heat-labile enterotoxin - pLT porcineEscherichia coli heat-labile enterotoxin - EI electron ionization  相似文献   

5.
125I-labelled heat-labile toxin (from Escherichia coli) and 125I-labelled cholera toxin bound to immobilized ganglioside GM1 and Balb/c 3T3 cell membranes with identical specificities, i.e. each toxin inhibited binding of the other. Binding of both toxins to Balb/c 3T3 cell membranes was saturable, with 50% of maximal binding occurring at 0.3 nM for cholera toxin and 1.1 nM for heat-labile toxin, and the number of sites for each toxin was similar. The results suggest that both toxins recognize the same receptor, namely ganglioside GM1. In contrast, binding of 125I-heat-labile toxin to rabbit intestinal brush borders at 0 degree C was not inhibited by cholera toxin, although heat-labile toxin inhibited 125I-cholera toxin binding. In addition, there were 3-10-fold more binding sites for heat-labile toxin than for cholera toxin. At 37 degrees C cholera toxin, but more particularly its B-subunit, did significantly inhibit 125I-heat-labile toxin binding. Binding of 125I-cholera toxin was saturable, with 50% maximal of binding occurring at 1-2 nM, and was quantitatively inhibited by 10(-8) M unlabelled toxin or B-subunit. By contrast, binding of 125I-heat-labile toxin was non-saturable (up to 5 nM), and 2 X 10(-7) M unlabelled B-subunit was required to quantitatively inhibit binding. Neuraminidase treatment of brush borders increased 125I-cholera toxin but not heat-labile toxin binding. Extensive digestion of membranes with Streptomyces griseus proteinase or papain did not decrease the binding of either toxin. The additional binding sites for heat-labile toxin are not gangliosides. Thin-layer chromatograms of gangliosides which were overlayed with 125I-labelled toxins showed that binding of both toxins was largely restricted to ganglioside GM1. However, 125I-heat-labile toxin was able to bind to brush-border galactoproteins resolved by SDS/polyacrylamide-gel electrophoresis and transferred to nitrocellulose.  相似文献   

6.
Plant polyphenols, RG-tannin, and applephenon had been reported to inhibit cholera toxin (CT) ADP-ribosyltransferase activity and CT-induced fluid accumulation in mouse ileal loops. A high molecular weight fraction of hop bract extract (HBT) also inhibited CT ADP-ribosyltransferase activity. We report here the effect of those polyphenols on the binding and entry of CT into Vero cells. Binding of CT to Vero cells or to ganglioside GM1, a CT receptor, was inhibited in a concentration-dependent manner by HBT and applephenon but not RG-tannin. These observations were confirmed by fluorescence microscopy using Cy3-labeled CT. Following toxin binding to cells, applephenon, HBT, and RG-tannin suppressed its internalization. HBT or applephenon precipitated CT, CTA, and CTB from solution, creating aggregates larger than 250 kDa. In contrast, RG-tannin precipitated CT poorly; it formed complexes with CT, CTA, or CTB, which were demonstrated with sucrose density gradient centrifugation and molecular weight exclusion filters. In agreement, CTA blocked the inhibition of CT internalization by RG-tannin. These data suggest that some plant polyphenols, similar to applephenon and HBT, bind CT, forming large aggregates in solution or, perhaps, on the cell surface and thereby suppress CT binding and internalization. In contrast, RG-tannin binding to CT did not interfere with its binding to Vero cells or GM1, but it did inhibit internalization.  相似文献   

7.
It is well recognized that the Shiga-like toxins (Stxs) preferentially bind to Gb3 glycolipids and the cholera toxin (CT) and heat-labile enterotoxin (LTp) bind to GM1 gangliosides. After binding to the cell surface, A-B bacterial enterotoxins have to be internalized by endocytosis. The transport of the toxin-glycolipid complex has been documented in several manners but the actual mechanisms are yet to be clarified. We applied a heterobifunctional cross-linker, sulfosuccinimidyl-2-(p-azidosalicylamido)-1,3'-dithiopropionate (SASD), to detect the membrane proteins involved in the binding and the transport of A-B bacterial enterotoxins in cultured cells. Both Stx1 and Stx2 bound to the detergent-insoluble microdomain (DIM) of Vero cells and Caco-2 cells, which were susceptible to the toxin, but neither was bound to insusceptible CHO-K1 cells. Both CT and LTp bound to the DIM of Vero cells, Caco-2 cells, and CHO-K1 cells. In a cross-linking experiment, Stx1 cross-linked only with a 27-kDa molecule, while Stx2, which was more potently toxic than Stx1, cross-linked with 27- and 40-kDa molecules of Vero cells as well as of Caco-2 cells; moreover, no molecules were cross-linked with the insusceptible CHO-K1 cells. LTp was cross-linked only to the 27-kDa molecule of these three cell types but the CT, which was more toxic than LTp, was also cross-linked with 27- and 40-kDa molecules of Vero cells, Caco-2 cells, and CHO-K1 cells. The 27- and the 40-kDa molecules might play a role in the endocytosis and retrograde transport of A-B bacterial enterotoxins.  相似文献   

8.
Escherichia coli heat-labile enterotoxin type I (LT-I)-binding galactoproteins, which were not recognized by cholera toxin, were detected in intestinal epithelial cells of BALB/c mouse by Western blotting. Inhibitory studies using lectins and modifications of sugar chain suggest that LT-I recognizes certain mucin-type sugar chains containing the terminal Galβ1-3GalNAc sugar sequence in the galactoproteins. The terminal sugar sequence is identical to that of GM1 ganglioside, the well-documented functional receptor for LT-I.  相似文献   

9.
It is well recognized that the Shiga-like toxins (Stxs) preferentially bind to Gb3 glycolipids and the cholera toxin (CT) and heat-labile enterotoxin (LTp) bind to GM1 gangliosides. After binding to the cell surface, A-B bacterial enterotoxins have to be internalized by endocytosis. The transport of the toxin-glycolipid complex has been documented in several manners but the actual mechanisms are yet to be clarified. We applied a heterobifunctional cross-linker, sulfosuccinimidyl-2-(p-azidosalicylamido)-1,3′-dithiopropionate (SASD), to detect the membrane proteins involved in the binding and the transport of A-B bacterial enterotoxins in cultured cells. Both Stx1 and Stx2 bound to the detergent-insoluble microdomain (DIM) of Vero cells and Caco-2 cells, which were susceptible to the toxin, but neither was bound to insusceptible CHO-K1 cells. Both CT and LTp bound to the DIM of Vero cells, Caco-2 cells, and CHO-K1 cells. In a cross-linking experiment, Stx1 cross-linked only with a 27-kDa molecule, while Stx2, which was more potently toxic than Stx1, cross-linked with 27- and 40-kDa molecules of Vero cells as well as of Caco-2 cells; moreover, no molecules were cross-linked with the insusceptible CHO-K1 cells. LTp was cross-linked only to the 27-kDa molecule of these three cell types but the CT, which was more toxic than LTp, was also cross-linked with 27- and 40-kDa molecules of Vero cells, Caco-2 cells, and CHO-K1 cells. The 27- and the 40-kDa molecules might play a role in the endocytosis and retrograde transport of A-B bacterial enterotoxins.  相似文献   

10.
Balb/c 3T3 cells contain a large number [(0.8-1.6) x 10(6)] of high-affinity (half-maximal binding at 0.2 nM) binding sites for cholera toxin that are resistant to proteolysis, but are quantitatively extracted with chloroform/methanol. The following evidence rigorously establishes that the receptor is a ganglioside similar to, or identical with, ganglioside GM1 by the galactose oxidase/NaB3H4 technique on intact cells was inhibited by cholera toxin. (2) Ganglioside GM1 was specifically adsorbed from Nonidet P40 extracts of both surface- (galactose oxidase/NaB3H4 technique) and metabolically ([1-14C]palmitate) labelled cells in the presence of cholera toxin, anti-toxin and Staphylococcus aureus. (3) Ganglioside GM1 was the only ganglioside labelled when total cellular gangliosides separated on silica-gel sheets were overlayed with 125I-labelled cholera toxin, although GM3 and GD1a were the major gangliosides present. In contrast no evidence for a galactoprotein with receptor activity was obtained. Cholera toxin did not protect the terminal galactose residues of cell-surface glycoproteins from labelling by the galactose oxidase/NaB3H4 technique. No toxin-binding proteins could be identified in Nonidet P40 extracts of [35S]-methionine-labelled cells by immunochemical means. After sodium dodecyl sulphate/polyacrylamide-gel electrophoresis none of the major cellular galactoproteins identified by overlaying gels with 125I-labelled ricin were able to bind 125I-labelled cholera toxin. It is concluded that the cholera toxin receptor on Balb/c 3T3 cells is exclusively ganglioside GM1 (or a related species), and that cholera toxin can therefore be used to probe the function and organisation of gangliosides in these cells as previously outlined [Critchley, Ansell, Perkins, Dilks & Ingram (1979) J. Supramol. Struct. 12, 273-291].  相似文献   

11.
The heat-labile enterotoxin from Escherichia coli (LT) is responsible for so-called traveller's diarrhea and is closely related to the cholera toxin (CT). Toxin binding to GM1 at the epithelial cell surface of the small intestine initiates the subsequent diarrheal disease. However, LT has a broader receptor specificity than CT in that it also binds to N-acetyllactosamine-terminated structures. The unrelated lectin from Erythrina corallodendron (ECorL) shares this latter binding property. The findings that both ECorL and porcine LT (pLT) bind to lactose as well as to neolactotetraosylceramide suggests a common structural theme in their respective primary binding sites. Superimposing the terminal galactose of the lactoses in the respective crystal structures of pLT and ECorL reveals striking structural similarities around the galactose despite the lack of sequence and folding homology, whereas the interactions of the penultimate GlcNAcb3 in the neolactotetraosylceramide differ. The binding of branched neolactohexaosylceramide to either protein reveals an enhanced affinity relative to neolactotetraosylceramide. The b3-linked branch is found to bind to the primary Gal binding pocket of both proteins, whereas the b6-linked branch outside this site provides additional interactions in accordance with the higher binding affinities found for this compound. While the remarkable architectural similarities of the primary galactose binding sites of pLT and ECorL point to a convergent evolution of these subsites, the distinguishing structural features determining the overall carbohydrate specificities are located in extended binding site regions. In pLT, Arg13 is thus found to play a crucial role in enhancing the affinity not only for N-acetyllactosamine-terminated structures but also for GM1 as compared to human LT (hLT) and CT. The physiological relevance of the binding of N-acetyllactosamine-containing glycoconjugates to LT and ECorL is briefly discussed.  相似文献   

12.
Vibrio cholera toxin and the heat-labile enterotoxin of Escherichia coli have been shown to differ somewhat in their ligand specificity and in the antigenicity of their binding sites. Therefore, the components of the oligosaccharide portion of GM1 bound by cholera toxin and the heat-labile enterotoxin of E. coli were identified by determining the concentration of GM1, derivatives of GM1, oligosaccharide isolated from GM1, or clustered oligosaccharide needed to inhibit toxin binding to GM1-coated plastic wells. The KIs for GM1, the C(7) sialosyl alcohol [corrected] of GM1, and ethanolamine-sialosyl-GM1 were similar (approximately 30-50 nM) for both toxins. N-Deacetylation of GM1 resulted in a small increase in KI; formation of the sialosyl methyl ester increased the KI 2-5 fold; loss of the terminal galactosyl residue (GM2) increased the KI by 10-15-fold; and removal of the sialosyl moiety (asialo-GM1) resulted in loss of inhibition of both toxins. Oligosaccharide isolated from GM1 had a KI for both toxins that was approximately 100-fold greater than that obtained for GM1 and approximately 1000-fold greater than that for a clustered oligosaccharide derivative having an average of 8 oligosaccharide residues (isolated from GM1) per molecule of poly-L-lysine. These results indicate that both toxins are functionally quite similar in their recognition of GM1 as a ligand in that each requires the free carboxyl group of sialic acid for optimum binding, does not need carbons 8 and 9 of the sialosyl moiety nor the acetyl groups associated with the sialic acid and galactosamine residues, and can have its binding to GM1 blocked by a nonlipid compound, i.e. oligo-GM1-poly-L-lysine.  相似文献   

13.
The binding and hemagglutinating activities of the B subunit(s) of the heat-labile enterotoxin (LTh-B) isolated from human enterotoxigenic Escherichia coli were investigated. The binding of 125I-labeled LTh-B to neuraminidase-treated human type B erythrocytes was most effectively inhibited by ganglioside GM1. A number of mono-, di- and polysaccharides, as well as several glycoproteins were at least 500 times less potent inhibitors. However, hemagglutination was effectively inhibited by galactose, melibiose and hog A + H but not by ganglioside GM1. Preincubation of the LTh-B with ganglioside GM1 gave much stronger hemagglutination than LTh-B alone. These results suggest that the predominant binding substance for LTh-B on neuraminidase-treated human type B erythrocytes is ganglioside GM1, but indicate that the interaction of LTh-B with ganglioside GM1 is different in hemagglutination.  相似文献   

14.
A clonal line of murine Leydig tumor cells (MLTC-1) bound both human chorionic gonadotropin (hCG) and cholera toxin (CT) with high affinity and accumulated cyclic AMP in response to either effector. The major cellular ganglioside was GM3 with small amounts of GM2, GM1, and GD1a. The gangliosides became labeled when the cells were grown in medium containing [3H] galactose or were exposed to galactose oxidase or NaIO4 followed by NaB3H4. CT specifically protected GM1 from surface labeling whereas hCG did not protect any gangliosides from being labeled. When the cells were exposed to sialidase, surface GD1a was eliminated, and GM1 increased with a corresponding increase in CT binding. When sialidase-treated cells were first incubated with the B component of CT, binding and action of CT was blocked. The cells, however, retained their ability to bind and respond to hCG. Addition of purified gangliosides to the medium effectively inhibited the binding and action of CT but not hCG. The cells incorporated the exogenous gangliosides and exhibited increased binding of and responsiveness to CT but not hCG. Both hCG- and CT-receptor complexes were extracted from the cells with nonionic detergent and analyzed by sucrose gradient centrifugation. The hCG-receptor complex had an apparent molecular weight of 190,000 whereas the CT-receptor complex sedimented only slightly faster than CT itself. MLTC-1 gangliosides were separated on thin layer chromatograms which were overlayed with either iodinated CT or hCG. The toxin bound to a ganglioside corresponding to GM1 whereas the hormone did not bind to any of the gangliosides. When the cells were incubated overnight with hCG, they lost their hCG receptors but exhibited an increase in CT binding and gangliosides. Our results indicate that GM1 is the specific receptor for CT whereas gangliosides are not involved in the binding and action of hCG.  相似文献   

15.
Heat-labile enterotoxin (LT) is part of the cholera toxin (CT) family and consists of a catalytic A subunit and a B pentamer that serves to recognize the oligosaccharide part of the GM1 ganglioside receptor. We report here the crystal structure of heat-labile enterotoxin in complex with the disaccharide portion of the Thomsen-Friedenreich (T-antigen) tumor marker. The toxin:carbohydrate complex is determined to 2.13 A resolution, yielding an R-factor of 18.5%. The T-antigen disaccharide, D-Gal-beta 1,3-GalNAc-Ser/Thr, is present in more than 85% of human carcinomas and monitoring its autoimmune response is used for the early detection of tumors. Insight into the molecular recognition of this tumor antigen by sugar binding proteins can benefit the development of a diagnostic tool for human carcinomas as well as a T-antigen directed anticancer drug delivery system.  相似文献   

16.
Cell surface glycolipids of normal human fibroblasts and NCTC2071 cells (transformed mouse fibroblasts) were labeled by incubating the intact cells with either galactose oxidase or sodium periodate, followed by reduction of the oxidized sugar residues with NaB3H4. In intact human fibroblasts, incorporation of 3H was increased with increasing time of exposure to galactose oxidase prior to treatment with NaB3H4. Following limited exposure to galactose oxidase, more label was incorporated into the larger glycolipids. Although labeling of the monosialoganglioside GM1 was maximal by 16 h, not all of the GM1 in the intact cells appeared to be accessible to galactose oxidase, since 10 to 12 times more GM1 was labeled when cells were disrupted before incubation with the enzyme. The human fibroblasts contained approximately 8 X 10(6) molecules of GM1 per cell. Maximal binding of choleragen (5 X 10(5) molecules of [125I]choleragen per cell) completely prevented cholevented oxidation of GM1 in intact fibroblasts by galactose oxidase but only partially protected the sialic acid moiety of GM1 from oxidation by periodate. Choleragen had little effect on the enzymatic or chemical oxidation of other glycolipids. NCTC 2071 cells do not contain endogenous GM1 but incorporate exogenous GM1 from the culture medium. When bound to NCTC 2071 cells, exogenous GM1 was protected by choleragen from oxidation by galactose oxidase or whether endogenous or taken up from the incubation medium, are, after interaction with choleragen, less accessible to oxidation by periodate or galactose oxidase.  相似文献   

17.
Intestinal brush borders from Wistar rats contained a total of 20-30-times more binding sites for Escherichia coli heat-labile enterotoxin (LT-1) than for cholera toxin (CT). The results suggest that LT-1 binds to sites in addition to ganglioside GM1, the binding site for CT. Brush border proteins were separated by SDS-PAGE, blotted to nitrocellulose and the filters incubated with 125I-labeled toxins. [125I]LT-1 was shown to bind to a series of brush border galactoproteins ranging in size from 130-140 kDa. Binding was inhibited by unlabeled LT-1 (but not CT), and by ricin and free galactose. A number of brush border enzymes are large glycoproteins which can be solubilised by papain. The papain-solubilised sucrase-isomaltase complex was purified by affinity chromatography and shown to bind LT-1, as did the proteins in fractions enriched in maltase activity. However, such brush border galactoproteins do not account for all of the additional LT-1 binding sites. Thus, brush borders prepared from 1-15-day-old rabbits contained many more binding sites for LT-1 than CT despite the absence of any sucrase-isomaltase activity, and no [125I]LT-1 binding proteins could be detected by blotting. There was a marked variation in the number of LT-1 binding sites in different strains of rat, and between different species.  相似文献   

18.
FITC-labeled cholera toxin subunit B (CTB) stained the surfaces of cells of mucous acini in the submandibular gland. CTB, also called choleragenoid, binds to the GM1 glycolipid in the cell membrane. The binding in most acini was inhibited by periodic acid oxidation of the sections, while some acini remained unaffected even after increased oxidation. Staining with the subunit was also reduced significantly by adding galactose to the incubation medium. Binding of CTB to cell surfaces apparently requires intact sialic groups on most, but not all, cell surfaces. Oxidation of the sialic acid residues may influence the structure of the sialylated GM1 molecules on the cell surface in different ways. It is possible that both the sialic acid residue and the terminal galactose are oxidized. Alternatively, the sialic acid may be resistant to acid hydrolysis in gangliosides in which the sialic acid is attached to the internal galactose residue linked to GalNAc, as in the GM1 glycolipid. Inhibition of the GM1 receptor binding to cholera toxin has potential for protection of humans against cholera. Galactose and agents that modify sialic acid inhibit the accessibility of the toxin to the GM1 carbohydrate receptor. Human milk contains high levels of sialic acid glycoconjugates that may provide defense mechanisms.  相似文献   

19.
Ricin is a highly toxic protein produced by the castor plant Ricinus communis. The toxin is relatively easy to isolate and can be used as a biological weapon. There is great interest in identifying effective inhibitors for ricin. In this study, we demonstrated by three independent assays that a component of reconstituted powdered milk has a high binding affinity to ricin. We discovered that milk can competitively bind to and reduce the amount of toxin available to asialofetuin type II, which is used as a model to study the binding of ricin to galactose cell-surface receptors. Milk also removes ricin bound to the microtiter plate. In parallel experiments, we demonstrated by activity assay and by immuno-PCR that milk can bind competitively to 1 ng/ml ricin, reducing the amount of toxin uptake by the cells, and thus inhibit the biological activity of ricin. The inhibitory effect of milk on ricin activity in Vero cells was at the same level as by anti-ricin antibodies. We also found that (a) milk did not inhibit ricin at concentrations of 10 or 100 ng/ml; (b) autoclaving 10 and 100 ng/ml ricin in DMEM at 121 °C for 30 min completely abolished activity; and (c) milk did not affect the activity of another ribosome inactivating protein, Shiga toxin type 2 (Stx2), produced by pathogenic Escherichia coli O157:H7. Unlike ricin, which is internalized into the cells via a galactose-binding site, Stx2 is internalized through the cell surface receptor glycolipid globotriasylceramides Gb3 and Gb4. These observations suggest that ricin toxicity may possibly be reduced at room temperature by a widely consumed natural liquid food.  相似文献   

20.
With the aim of developing high-affinity mono and multivalent antagonists of cholera toxin (CT) and Escherichia coli heat-labile enterotoxin (LT) we are using the galactose portion of the natural receptor ganglioside GM1 as an anchoring fragment in structure-based inhibitor design efforts. In order to establish a better structure-activity relationship for guiding these studies, we designed and prepared a small focused library of twenty 3,5-substituted phenylgalactosides based on two previous leads. The compounds were tested for their ability to block CTB(5) binding to immobilized ganglioside receptor and compared to the two previous leads. The crystal structures of the most promising compounds bound to either CTB(5) or LTB(5) were then determined in order to understand the basis for affinity differences. The most potent new compound yielded a six-fold improvement over our benchmark lead m-nitrophenyl-alpha-d-galactopyranoside (MNPG), and a two-fold improvement in IC(50) over a newer MNPG derivative. These results support the notion that the m-nitrophenyl moiety of MNPG and its derivatives is an important element to retain in future optimization efforts. Additionally, a consensus binding-pocket for the alkylmorpholine or piperazine moiety present in all of the designed antagonists was established as an important area of the GM1 binding site to target in future work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号