首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Like other chenopods, sugarbeets (Beta vulgaris L. cv Great Western D-2) accumulate glycine betaine when salinized; this may be an adaptive response to stress. The pathway of betaine synthesis in leaves of salinized (150-200 millimolar NaCl) sugarbeet plants was investigated by supplying [14C]formate, phosphoryl[14C]monomethylethanolamine ([14C][unk] MME) or phosphoryl[14C]choline ([14C][unk] choline) to leaf discs and following 14C incorporation into prospective intermediates. The 14C kinetic data were used to develop a computer model of the betaine pathway.

When [14C]formate was fed, [unk] MME, phosphoryldimethylethanolamine ([unk] DME) and [unk] choline were the most prominent methylated products at short labeling times, after which 14C appeared in free choline and in betaine. Phosphatidylcholine labeled more slowly than [unk] choline, choline, and betaine, and behaved as a minor end product. Very little 14C entered the free methylethanolamines. When [14C][unk] MME was supplied, a small amount was hydrolyzed to the free base but the major fate was conversion to [unk] DME, [unk] choline, free choline, and betaine; label also accumulated slowly in phosphatidylcholine. Label from supplied [14C][unk] choline entered choline and betaine rapidly, while phosphatidylcholine labeled only slowly and to a small extent.

These results are consistent with the pathway [unk] MME →[unk] DME → [unk] choline → choline → → betaine, with a minor side branch leading from [unk] choline into phosphatidylcholine. This contrasts markedly (a) with the pathway of stress-induced choline and betaine synthesis in barley, in which phosphatidylcholine apparently acts as an intermediate (Hitz, Rhodes, Hanson 1981, Plant Physiol 68: 814-822); (b) with choline biogenesis in mammalian liver and microorganisms. Computer modeling of the experimental data pointed strongly to regulation at the [unk] choline → choline step, and also indicated that the rate of [unk] choline synthesis is subject to feedback inhibition by [unk] choline.

  相似文献   

2.
In wilted barley leaves, betaine accumulates at about 200 nanomoles per 10 centimeters leaf per day. Results with 14C-labeled precursors were qualitatively and quantitatively consistent with de novo synthesis of this betaine from serine via ethanolamine, choline, and betaine aldehyde and indicated that water stress may increase the activities of all steps in this pathway except the last.  相似文献   

3.
Hanson AD  Wyse R 《Plant physiology》1982,70(4):1191-1198
Like other halophytic chenopods, sugar beet (Beta vulgaris L.) can accumulate high betaine levels in shoots and roots. N,N,N-trimethylglycine impedes sucrose crystallization and so lowers beet quality. The objective of this research was to examine the genetic variability and physiological significance of betaine accumulation in sugar beet and its relatives. Three cultivated genotypes of B. vulgaris and two genotypes of the wild progenitor B. maritima L. were grown with and without gradual salinization (final NaCl concentration = 150 millimolar). At 6 weeks old, all five genotypes had moderately high betaine levels in shoots and roots when unsalinized (averages for all genotypes: shoots = 108 micromoles per gram dry weight; roots = 99 micromoles per gram dry weight). Salinization raised betaine levels of shoots and roots 2- to 3-fold, but did not greatly depress shoot or root growth. The genotype WB-167—an annual B. maritima type—always had approximately 40% lower betaine levels in roots than the other four genotypes, although the betaine levels in the shoots were not atypically low.

The site and pathway of betaine synthesis were investigated in young, salinized sugar beet plants by: (a) supplying 1 micromole [14C]ethanolamine to young leaf blades or to the taproot sink of intact plants; (b) supplying tracer [14C]formate to discs of leaf, hypocotyl, and taproot tissues in darkness. Conversion of both 14C precursors to betaine was active only in leaf tissue. Very little 14C appeared in the phospholipid phosphatidylcholine before betaine was heavily labeled; this was in marked contrast to the labeling patterns in salinized barley. Phosphorylcholine was a prominent early 14C metabolite of both [14C]ethanolamine and [14C]formate in all tissues of sugar beet. Betaine translocation was examined in young plants of sugar beet and WB-167 by applying tracer [methyl-14C]betaine to a young expanded leaf and determining the distribution of 14C after 3 days. In all cases, extensive 14C translocation to young leaves and taproot sink occurred; neither in the fed leaf nor in sink organs were any 14C metabolites of betaine detected.

  相似文献   

4.
Water and salt stress promote betaine accumulation in leaves of barley (Hordeum vulgare L.) by accelerating the de-novo synthesis of betaine, via choline. Previous radiotracer kinetic studies have implicated stress-enhanced turnover of the choline moiety of phosphatidylcholine (PC) as a major source of choline for betaine synthesis. Two approaches have therefore been followed to show whether stress-induced PC turnover is a cellor organelle-specific phenomenon, or a generalized one. In the first approach, [3H]ethanolamine of high specific activity was supplied to second leaves of unstressed and water-stressed barley plants; after 1 h, paired sections of tissue were excised from each leaf, one for extraction and analysis of [3H]metabolites and the other for autoradiography. The3H-activity remaining in the leaf tissue after washing out the water-soluble3H-metabolites during preparation for autoradiography was taken to be mainly in phospholipids. In unstressed leaves, [3H]phosphatidylethanolamine (PE) was the major labeled phospholipid, whereas there were approximately equal amounts of [3H]PE and [3H]PC in stressed leaves. At the light-microscope level, silver grains were associated with all living cells in both unstressed and stressed leaves; grains were concentrated in the cytoplasmic regions of highly vacuolate mesophyll cells, and were distributed throughout densely cytoplasmic vascular parenchyma. At the electron-microscope level, silver grains were not confined to any particular types of membranes in unstressed or stressed leaves. In the second approach, second leaves of stressed plants received a 1-h pulse of [14C]ethanolamine, and were then homogenized. The brei was subjected to sucrose density gradient centrifugation. The specific radioactivity of [14C]PC was quite similar in the gradient fractions, whether they contained microsomes or mitochondrial plus chloroplast membranes. We infer that stress does not enhance the turnover of any structurally discrete class of PC, but rather stimulates PC turnover in several or all classes of membranes in most cells of the leaf.Abbreviations and symbols PE phosphatidylethanolamine - PC phosphatidylcholine - PMME phosphatidylmonomethylethanolamine - PDME phosphatidyldimethylethanolamine - TLC thin-layer chromatography - leaf leaf water potential  相似文献   

5.
The methylation steps in the biosynthesis of phosphatidylcholine by castor bean (Ricinus communis L.) endosperm have been studied by pulse-chase labeling. Endosperm halves were incubated with [methyl-14C]S-adenosyl-l-methionine, [2-14C]ethanolamine, [14C]ethanolamine phosphate, or [14C]serine phosphate. The kinetics of appearance were followed in the free, phospho-, and phosphatidyl-bases. The initial methylation utilized ethanolamine as a substrate to form methylethanolamine, which was then converted to dimethylethanolamine, choline, and phosphomethylethanolamine. Subsequent methylations occurred at the phospho-base and, to a lesser extent, the phosphatidyl-base levels, after which the radioactivity either remained constant or decreased in these compounds and accumulated in phosphatidylcholine. Although the precursors tested did support the synthesis of choline, the kinetics of the labeling make them unlikely to be the major sources of free choline to be utilized for the nucleotide pathway. A model with two pools of choline is proposed, and the implications of these results for the pathways leading to phosphatidylcholine biosynthesis are discussed.  相似文献   

6.
Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [14C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [14C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.  相似文献   

7.
Phosphate in the xylem exudate of tomato (Lycopersicon esculentum) plants was 70 to 98% inorganic phosphate (Pi), 2 to 30% P-choline, and less than 1% P-ethanolamine. Upon adding 32Pi to the nutrient, Pi in xylem exudate had the same specific activity within 4 hours. P-choline and P-ethanolamine reached the same specific activity only after 96 hours. The amount of Pi in xylem exudate was dependent on Pi concentration in the nutrient and decreased from 1700 to 170 micromolar when Pi in the nutrient decreased from 50 to 2 micromolar. The flux of 0.4 nmoles organic phosphate per minute per gram fresh weight root into the xylem exudate was not affected by the Pi concentration in the nutrient solution unless it was below 1 micromolar. During 7 days of Pi starvation, Pi in the xylem exudate decreased from 1400 to 130 micromolar while concentrations of the two phosphate esters remained unchanged.

The concentration of phosphate esters in the xylem exudate was increased by addition of choline or ethanolamine to the nutrient solution, but Pi remained unchanged. Upon adding [14C]choline to the nutrient, 10 times more [14C]P-choline than [14C]choline was in the xylem exudate and 85 to 90% of the ester phosphate was P-choline. When [14C]ethanolamine was added, [14C]P-ethanolamine and [14C]ethanolamine in the xylem sap were equal in amount. P-choline and P-ethanolamine accumulated in leaves of whole plants at the same time and the same proportion as observed for their flux into the xylem exudate. No relationship between the transport of P-choline and Pi in the xylem was established. Rather, the amount of choline in xylem exudate and its incorporation into phosphatidylcholine in the leaf suggest that the root is a site of synthesis of P-choline and P-ethanolamine for phospholipid synthesis in tomato leaves.

  相似文献   

8.
Proline-[14C] infiltrated into leaf disks of tobacco (Nicotiana tabacum cv BY-4) in the dark was converted to glutamic acid and then metabolized through the TCA cycle. A smaller amount of proline-[14C] was metabolized when the leaf disks were wilted than when turgid. During a 6 hr period following rehydration, disks converted a larger amount of proline-[14C] to oxidized products than when wilted, although the proline content of rehydrated disks had not declined. These results indicate that proline oxidation is inhibited by water stress.  相似文献   

9.
Barley (Hordeum vulgare L.) plants at the three-leaf stage were water-stressed by flooding the rooting medium with polyethylene glycol 6000 with an osmotic potential of −19 bars, or by withholding water. While leaf water potential fell and leaf kill progressed, the betaine (trimethylglycine) content of the second leaf blade rose from about 0.4 micromole to about 1.5 micromoles in 4 days. The time course of betaine accumulation resembled that of proline accumulation. Choline levels in unstressed second leaf blades were low (<0.1 micromole per blade) and remained low during water stress. Upon relief of stress, betaine-like proline—remained at a high concentration in drought-killed leaf zones, but betaine did not disappear as rapidly as proline from viable leaf tissue during recovery.

When [methyl-14C]choline was applied to second leaf blades of intact plants in the growth chamber, water-stressed plants metabolized 5 to 10 times more 14C label to betaine than control plants during 22 hours. When infiltrated with tracer quantities of [14C]formate and incubated for various times in darkness or light, segments cut from water-stressed leaf blades incorporated about 2- to 10-fold more 14C into betaine than did segments from unstressed leaves. In segments from stressed leaves incubated with [14C]formate for about 18 hours in darkness, betaine was always the principal 14C-labeled soluble metabolite. This 14C label was located exclusively in the N-methyl groups of betaine, demonstrating that reducing equivalents were available in stressed leaves for the reductive steps of methyl group biosynthesis from formate. Incorporation of 14C from formate into choline was also increased in stressed leaf tissue, but choline was not a major product formed from [14C]formate.

These results are consistent with a net de novo synthesis of betaine from 1- and 2-carbon precursors during water stress, and indicate that the betaine so accumulated may be a metabolically inert end product.

  相似文献   

10.
Oligodendrocytes were isolated from adult pig brain and cultivated for 18–24 days. [14C]acetate, [3H]galactose or [35S]sulfate were added to the medium for an additional 24 h. Lipids were extracted and separated by high-performance thin-layer chromatography. The labeled lipids were studied by fluorography and scintillation counting. [14C]acetate was incorporated in decreasing order into neutral lipids, phosphatidylcholine, ethanolamine phosphatides, galactocerebrosides, phosphatidylinositol, phosphatidylserine, sulfatides and sphingomyelin. From the [14C]acetate incorporated into ethanolamine and choline phosphatides, 71.6 and 14.8%, respectively, were found in plasmalogens. Among neutral lipids, [14C]acetate labeled not only cholesterol but also large amounts of triglycerides. No cholesterol esters were synthesized. [3H]galactose primarily labeled galactocerebrosides, sulfatides, and monogalactosyl diglyceride. [35S]sulfate incorporation was restricted to sulfatides. Together with our previous results concerning proteins, these data show that: (1) oligodendrocytes remain highly differentiated in long-term cultures; (2) they are able to synthesize the major components of myelin; (3) they synthesize surprisingly high amounts of triglycerides and of monogalactosyl diglyceride, a marker for myelination.  相似文献   

11.
Digestion and absorption of phosphatidylcholine by Aeshna cyanea larvae were studied in vivo and in vitro with the isolated digestive juice and isolated midgut. The experiments were performed with stable ether analogues (1-alkyl-2-acyl-,1,2-dialkyl phosphatidylcholine, and 1-monoalkyl-lysophosphati-dylcholine), with radioactive 1,2-diacylphosphatidylcholine alternatively labelled in the acyl- and choline moieties, and with several phosphatidylcholine derivatives (1-[1-14C]acyl- and 1-[3H] alkyl-lysophosphatidylcholine, [1-14C]oleic acid, [2-14C]glycerol, phosphoryl[methyl-14C]choline, and [methyl-14C]choline). Chromatographic analyses of the digestion products revealed that phosphatidylcholine was degraded via two interconnected hydrolytic pathways involving phospholipase C, phospholipase A2, lipase, and alkaline phosphatase. Complete hydrolysis by these pathways yielded the same four end products: free fatty acid, glycerol, choline, and Pi, which were absorbed by the midgut enterocytes. Of the intermediate hydrolysates, lysophosphatidylcholine, monoacylglycerol, and possibly phosphorylcholine were also absorbed. Radiolabelled oleic acid, glycerol, lysophosphatidylcholine and monoacylglycerol (as judged from monoalkylglycerol absorption) were incorporated into phospholipids and acylglycerols of the midgut enterocytes and were released into the haemolymph primarily in the form of diacylglycerols. In the case of glycerol ingestion, a small fraction of haemolymph radioactivity was associated with free glycerol and glycerolphosphate. After absorption by the enterocytes, radiolabelled choline was partly oxidized to betaine, partly phosphorylated, and partly incorporated into lyso- and phosphatidylcholine. It was recovered from the haemolymph predominantly as free choline, phosphorylcholine, and betaine. Arch. Insect Biochem. Physiol. 36:273–293, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The glycine betaine which accumulated in shoots of young barley plants (Hordeum vulgare L.) during an episode of water stress did not undergo net destruction upon relief of stress, but its distribution among plant organs changed. During stress, betaine accumulated primarily in mature leaves, whereas it was found mainly in young leaves after rewatering. Well-watered, stressed, and stressed-rewatered plants were supplied with [methyl-14C]betaine (8.5 nmol) via an abraded spot on the second leaf blade, and incubated for 3 d. In all three treatments the added 14C migrated more or less extensively from the second leaf blade, but was recovered quantitatively from various plant organs in the form of betaine; no labeled degradation products were found in any organ. When 0.5 mol of [methyl-14C]betaine was applied via an abraded spot to the second leaf blades of well-watered, mildly-stressed, and stressed-rewatered plants, 14C was translocated out of the blades at velocities of about 0.2–0.3 cm/min which were similar to velocities found for applied [14C]sucrose. Heat-girdling of the sheath prevented export of [14C]betaine from the blade. When 0.5 mol [3H]sucrose and 0.5 mol [14C]betaine were suppled simultaneously to second leaf blades, the 3H/14C ratio in the sheath tissue was the same as that of the supplied mixture. After supplying tracer [14C]betaine aldehyde (the immediate precursor of betaine) to the second leaf blade, the 14C which was translocated into the sheath was in the form of betaine. Thus, betaine synthesized by mature leaves during stress behaves as an inert end product and upon rewatering is translocated to the expanding leaves, most probably via the phloem. Accordingly, it is suggested that the level of betaine in a barley plant might serve as a useful cumulative index of the water stress experienced during growth.  相似文献   

13.
Choline Synthesis in Spinach in Relation to Salt Stress   总被引:5,自引:2,他引:3       下载免费PDF全文
Choline metabolism was examined in spinach (Spinacia oleracea L.) plants growing under nonsaline and saline conditions. In spinach, choline is required for phosphatidylcholine synthesis and as a precursor for the compatible osmolyte glycine betaine (betaine). When control (nonsalinized) leaf discs were incubated for up to 2 h with [1,2-14C]ethanolamine, label appeared in the N-methylated derivatives of phosphoethanolamine including phosphomono-, phosphodi-, and phosphotri- (i.e. phosphocholine) methyl-ethanolamine, as well as in choline and betaine, whereas no radioactivity could be detected in the mono- and dimethylated derivatives of the free base ethanolamine. Leaf discs from salinized plants showed the same pattern of labeling, although the proportion of label that accumulated in betaine was almost 3-fold higher in the salinized leaf discs. Enzymes involved in choline metabolism were assayed in crude leaf extracts of plants. The activites of ethanolamine kinase and of the three S-adenosylmethionine:phospho-base N-methyltransferase enzymes responsible for N-methylating phosphoethanolamine to phosphocholine were all higher in extracts of plants salinized step-wise to 100, 200, or 300 mM NaCI compared with controls. In contrast, choline kinase, phosphocholine phosphatase, and cytidine 5[prime]-triphosphate: phosphocholine cytidylyltransferase activities showed little variation with salt stress. Thus, the increased diversion of choline to betaine in salt-stressed spinach appears to be mediated by the increased activity of several key enzymes involved in choline biosynthesis.  相似文献   

14.
Mudd SH  Datko AH 《Plant physiology》1989,90(1):306-310
The results of experiments in which intact plants of Lemna paucicostata were labeled with either l-[3H3C]methionine, l-[14CH3]methionine, or [1,2-14C]ethanolamine support the conclusion that growth in concentrations of choline of 3.0 micromolar or above brings about marked decreases in the rate of biosynthesis of methylated forms of ethanolamine (normally present chiefly as phosphatidylcholine, with lesser amounts of choline and phosphocholine). The in vivo locus of the block is at the committing step in the biosynthetic sequence at which phosphoethanolamine is methylated by S-adenosylmethionine to form phosphomethylethanolamine. The block is highly specific: flow of methyl groups originating in methionine continues into S-adenosylmethionine, S-methylmethionine, the methyl moieties of pectin methyl ester, and other methylated metabolites. When choline uptake is less than the total that would be synthesized by control plants, phosphoethanolamine methylation is down-regulated to balance the uptake; total plant content of choline and its derivatives remains essentially constant. At maximum down-regulation, phosphoethanolamine methylation continues at 5 to 10% of normal. A specific decrease in the total available activity of AdoMet: phosphoethanolamine N-methyltransferase, as well as feedback inhibition of this enzyme by phosphocholine, and prevention of accumulation of phosphoethanolamine by down-regulation of ethanolamine synthesis may each contribute to effective control of phosphoethanolamine methylation. This down-regulation may necessitate major changes in S-adenosylmethionine metabolism. Such changes are discussed.  相似文献   

15.
The methylation steps in the biosynthesis of phosphatidylcholine by castor bean (Ricinus communis L.) endosperm have been studied by pulse-chase labeling. Endosperm halves were incubated with [methyl-(14)C]S-adenosyl-l-methionine, [2-(14)C]ethanolamine, [(14)C]ethanolamine phosphate, or [(14)C]serine phosphate. The kinetics of appearance were followed in the free, phospho-, and phosphatidyl-bases. The initial methylation utilized ethanolamine as a substrate to form methylethanolamine, which was then converted to dimethylethanolamine, choline, and phosphomethylethanolamine. Subsequent methylations occurred at the phospho-base and, to a lesser extent, the phosphatidyl-base levels, after which the radioactivity either remained constant or decreased in these compounds and accumulated in phosphatidylcholine. Although the precursors tested did support the synthesis of choline, the kinetics of the labeling make them unlikely to be the major sources of free choline to be utilized for the nucleotide pathway. A model with two pools of choline is proposed, and the implications of these results for the pathways leading to phosphatidylcholine biosynthesis are discussed.  相似文献   

16.
Growth in salt-stressed (2.0 M NaCl) Aphanothece halophytica was initially delayed during the first two days of cultivation and eventually attained the same growth rate as the control (0.5 M NaCl) cells. Glycinebetaine accumulation increased slightly in control cells but a dramatic increase of glycinebetaine occurred in salt-stressed cells during a growth period of six days. There was no apparent increase in the synthesis of [14C] glycinebetaine in the control cells, in contrast to the marked increase in its synthesis in the salt-stressed cells. Increasing NaCl concentration in the growth medium induced both the accumulation and the synthesis of glycinebetaine. Time course experiments provided evidence that [14C] choline was first oxidized to [14C] betaine aldehyde which was further oxidized to [14C] glycinebetaine in A. halophytica. The supporting data for such a pathway were obtained from the presence of choline and betaine aldehyde dehydrogenase activities found in the membrane and cytoplasmic fractions, respectively. The activities of these two enzymes were also enhanced upon increasing NaCl concentration in the growth medium from 0.5 M to 2.0 M. Under this condition an increaseof approximately 1.5-fold was observed for choline dehydrogenase activity as compared to 2.5-fold for betaine aldehyde dehydrogenase activity, suggesting a preferable induction of the latter enzyme by salt stress. A. halophytica was able to utilize [14C] ethanolamine and [14C] glycine for the synthesis of [14C] glycinebetaine. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Comparative studies were undertaken on the in vivo and in vitro incorporation of [14C] ethanolamine, [3H] methionine and [14C] S-adenosyl-methionine into phosphatidylethanolamine (PhE) and phosphatidylcholine (PhC) of rat liver and brain. It was observed that brain can synthesize de novo PhC from PhE via the transmethylation pathway, however synthesis rates were (1) markedly lower than those of liver and (2) decreased significantly with age. In the choline-containing lipids more than 95% of the radioactivity was found in PhC. Studies on the localization of the radioactivity in PhC following the intracranial injection of [3H] methionine or [14C] ethanolamine revealed that both precursors are incorporated almost exclusively into the choline moiety of this phospholipid. There was significant labeling of PhC only when the precursors were administered intracranially and much less incorporation was observed with the systemic routes. Thus following the intravenous administration of [14C] ethanolamine, the specific radioactivities of liver PhE and PhC were up to 75 times as high as those of brain and 4 to 5 times as high in the organs of the 20-day old as those of the adult. In contrast, when this precursor was administered intracranially the specific radioactivities of both phospholipids in liver were only twice as high as those of brain. Although the short-and long-term time-course studies on the in vivo incorporation of [14C] ethanolamine and [3H] methionine into PhC of both organs could suggest a precursor-product relationship between the biosynthesis of this phospholipid in liver and brain, this apparent relationship could also be due to the high turnover of PhE in liver, with half-life of 2.87 hr, and its low turnover in brain, with half-life of 10.7 days. The present findings on the low rate of formation of PhC from PhE in brain coupled with the fact that this conversion declines sharply with age, especially when the isotopes are administered systemically, could explain the observation of previous investigators that the brain cannot synthesize its own choline and thus it must derive its choline from exogenous sources such as lipid-choline. It was concluded that the brain can synthesize its own choline; however it remains also dependent on liver and dietary choline which are probably transported into the brain as free choline.  相似文献   

18.
Barley (Hordeum vulgare L. var. Prior) leaves converted more 14C-glutamic acid to free proline when water-stressed than when turgid; neither decreased protein synthesis nor isotope trapping by the enlarged free proline pools found in wilted tissue seemed to account for the result. This apparent stimulation of proline biosynthesis in wilted leaves was not observed when radioactive ornithine or P5C (Δ1-pyrroline-5-carboxylate, an intermediate following glutamate in proline synthesis) were used as proline precursors unless proline levels were high as a result of previous water stress. We interpret this to mean that any stimulation of proline synthesis by water stress must act on P5C formation rather than its reduction to proline. Experiments showing greater apparent conversion of 14C-glutamate to proline do not unequivocally prove that proline synthesis is stimulated by water stress, as P5C feeding studies show that proline oxidation is inhibited under comparable conditions. This inhibition could account, at least in part, for increased proline labeling, and must be considered an alternate possibility.  相似文献   

19.
In secondary leaves from spinach plants pretreated in vermiculite for 24 h with 300 mM NaCl, glycinebetaine accumulated at a rate of circa 0.16 mol 100 g-1 Chl d-1 (2 mol g-1 FW d-1), about three times the rate of control plants. The soluble carbohydrate and free amino acid contents did not increase significantly following salinisation until after 4 d when the relative growth rate also decreased. Leaf proline levels remained very low throughout the experimental period. K+ on a tissue water basis remained constant at 200 mM while Cl- and Na+ levels increased linearly to reach 175 and 100 mM respectively after 5 d of saline treatment. The osmotic pressure of leaf tissue also increased from 300 to 500 mosmol kg-1. These experimental conditions were considered suitable to study glycinebetaine biosynthesis and its induction by salinity in the absence of marked growth inhibition or metabolic disturbance. Radioactive labelled [14C]serine, ethanolamine and choline (all 1 mol, 13.3 MBq in 10 l) were fed to detached secondary leaves via the petiole 24 h after the exposure of plants to salt. The rate of isotope incorporation into water soluble products, lipids and residue was measured over a further 24 h. The major metabolic fate of exogenous [14C]choline and [14C]ethanolamine was incorporation into glycinebetaine while less 14C-label was found in phosphatidyl choline and phosphatidyl ethanolamine. Incorporation rates were identical in control and salinised leaves and were adequate to account for observed values of glycinebetaine accumulation previously reported in spinach. In contrast the labelling of glycinebetaine from [14C]serine was twice as great in salinated plants as in the controls. These results, together with short term labelling experiment with [14C]ethanolamine using leaf slices, were consistent with the formation of glycinebetaine via serine, ethanolamine and its methylated derivatives to choline with some control being exerted at the serine level. However a flux through the phosphorylated intermediates is not excluded.From a consideration of these results and the published data on barley subjected to water stress (Hanson and Scott, 1980 Plant Physiol. 66, 342–348) there appear to be significant differences in the biosynthetic pathways in spinach and barley.Abbreviations BHT butylated hydroxytoluerte (2,6-di-tert-butyl-4-methylphenol) - C1 one-carbon fragment - 1,2DG diglyceride moiety - DW day weight - MCW methanol-chloroform-water (12:5:1, by vol.) - PA phosphatidic acid - PC phosphatidyl choline - PMME phosphatidyl monomethylethanolamine - PDME phosphatidyl dimethylethanolamine - PE phosphatidyl ethanolamine - PPO 2,5-diphenyloxazole - POPOP 1,4-bis(5-phenyloxazoyl) benzene  相似文献   

20.
Sphingomyelin synthesis was studied in slices of rat heart by using [Me-14C]choline, [1,2-14C]ethanolamine, S-adenosyl-L-[14C]methionine and [32P]Pi as as precursors. In the presence of both [Me-14C]choline and [32P]Pi the ratio of the specific radioactivities of 14C and 32P in phosphatidylcholine was greater than in sphingomyelin at all the times studied. This suggested that synthesis of phosphatidylcholine and sphingomyelin de novo did not involve the utilization of a common pool of cytidine diphosphate choline. In addition, studies with [1,2-14C]ethanolamine and S-adenosyl-L-[14C]methionine indicated that a quantitatively significant pool of choline, derived from these precursors, was selectively utilized for sphingomyelin formation. This pool was not represented by phosphatidylcholine formed by methylation of phosphatidylethanolamine or by other pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号