首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 122 毫秒
1.
芽殖酵母是研究真核细胞的模式菌。细胞周期检查点是确保细胞周期正常运行的一种调控机制。就芽殖酵母细胞周期检查点调控加以介绍。  相似文献   

2.
芽殖酵母(Saccharomyces cerevisiae)和裂殖酵母(Schizosaccharomyces pombe)是用来研究异染色质形成、细胞周期、DNA复制等重要细胞功能的理想单细胞真核生物.本文主要介绍这2种酵母中异染色质形成的机制.异染色质是一种抑制基因转录和DNA重组的特殊染色质结构.尽管在芽殖酵母和裂殖酵母中异染色质形成都需要组蛋白修饰,但异染色质建立的机制不同.在芽殖酵母中参与异染色质形成的主要蛋白是Sir1-4蛋白(其中Sir2为组蛋白H3去乙酰化酶),而组蛋白H3赖氨酸9甲基化酶Clr4和异染色质蛋白Swi6在裂殖酵母异染色质形成中起关键的作用.在这两个酵母中,参与异染色质形成的组蛋白修饰蛋白由DNA结合蛋白招募到异染色质.此外,裂殖酵母也利用RNA干扰系统招募组蛋白修饰蛋白.  相似文献   

3.
临床常见酵母菌的特征和鉴定   总被引:1,自引:1,他引:0  
自然界酵母有500多种,但能致病的只有20多种,主要见于念珠菌属、隐球菌属、球拟酵母、丝孢酵母属和地霉属。酵母的特性:以芽殖为主的单细胞真菌,菌落呈乳酪样,无毛样气生菌丝(见图1)。对人类有致病性的酵母可依菌落形态分为两类:一类是酵母菌:单细胞,呈圆形或卵圆形,以母细胞产生芽胞而繁殖,不形成有性孢子。当酵母菌生长于固体培养基时,其形成的菌落与细菌菌落较为类似,不同于霉菌的粉状菌落,如隐球菌即属于此类。另一类是类酵母样真菌:圆形或卵圆形细胞,以出芽生殖而繁殖,有芽生孢子、菌丝,无子囊。  相似文献   

4.
寻找抗衰老活性分子并研究其作用机制是衰老药物学的研究重点和热点。前期研究发现天然产物多球壳菌素(一种神经鞘脂合成特异性抑制剂)能够延长模式生物芽殖酵母的寿命,而裂殖酵母在进化上更接近哺乳动物,且在形态和遗传上与芽殖酵母有显著差异的另一种模式生物,本研究考察了多球壳菌素对裂殖酵母寿命的影响,并进一步研究了其调控细胞寿命的相关机制。结果显示,多球壳菌素延长裂殖酵母寿命具有保守性,其延长细胞寿命的机制包括:增强细胞压力抗性、促进糖原和海藻糖的积累、降低胞内活性氧的水平,且发现多球壳菌素介导的寿命延长依赖于压力应答类蛋白激酶Sty1。综上,多球壳菌素是一种潜在的抗衰老药物分子,后期有望开发它用于延缓哺乳动物细胞(包括人类)衰老及预防和治疗衰老相关疾病。  相似文献   

5.
PHO8 5基因是芽殖酵母中的一个多功能基因。它参与了无机磷酸的代谢、碳源利用、糖原积累、特定蛋白质的降解和细胞周期调控。研究了酵母株YPH499及其衍生的pho85缺失株、pho80缺失株、pap1(pcl7)缺失株在不同浓度的不同金属离子中的存活情况 ,结果表明和芽殖酵母YPH499相比 ,pho85缺失株和pho80缺失株表现出对K 、Mg2 、Zn2 、Ca2 和Mn2 的耐受下降 ,而PAP1基因的缺失则不会导致芽殖酵母对上述金属离子的敏感性的变化 ;而对Cu2 ,3株突变株都表现出和YPH499相同的耐受性。同时测定了各缺失株和YPH499对上述金属离子的半致死浓度以及pho85缺失株、pho80缺失株和YPH499的细胞内总钙量。这些结果显示 ,PHO85蛋白激酶通过和它的PCLPHO80而不是PAP1结合 ,参与了芽殖酵母K 、Mg2 、Zn2 、Ca2 和Mn2 离子平衡的调控。PHO85和PHO80基因的缺失损害了芽殖酵母钙的储存。  相似文献   

6.
酵母细胞周期调控的研究进展   总被引:1,自引:0,他引:1  
酵母是一种研究细胞周期调控的好材料,在细胞周期的调控研究中具有重要作用。现在通常以芽殖酵母和裂殖酵母为代表进行研究。这两种酵母的细胞周期进程与高等真核生物相比各有其特点。 酵母细胞周期运行中存在有三个不同的控制点,即start点、S期启动点、G2/M转换处。在这三个不同的控制点起作用的CDK的组成是不同的。芽殖酵母分别是Cdc28-Clns;Cdc28-Clb5和Cdc28-Clb6;Cdc28-Clb1、Cdc28-Clb2、Cdc28-Clb3和Cdc28-Clb4。裂殖酵母中分别是Cdc2-Cig2;Cdc2-Cig2;Cdc2-Cdc13和Cdc2-Cig1,其中芽殖酵母中的Cdc28和裂殖酵母中的cdc2是等效基因。不同的控制点存在着不同 的调控机制,它们涉及到大量的基因,其中以G2/M转换处的调控机制研究得最早也最透彻。另外,APC途径在M中期/后期转化中起着重要作用。  相似文献   

7.
多球壳菌素是前期鉴定出的一种抗衰老活性小分子,为了较全面理解多球壳菌素的抗衰机制,本研究利用模式生物芽殖酵母为材料,借助DNA Microarray技术、生物信息学手段并结合相关功能实验分析了多球壳菌素对对数期芽殖酵母细胞基因表达谱、基因本体聚类及相关信号通路的影响。结果显示,多球壳菌素对细胞转录组产生了显著影响,共导致1 648个基因的差异表达(FDR0.05,Fold Change1.5),其中843个基因显著上调,805个基因显著下调。进一步对基因本体聚类、信号通路分析及功能实验验证显示,线粒体相关功能和信号通路是多球壳菌素作用的一个主要靶点,本研究对多球壳菌素的进一步开发利用奠定了重要的理论基础。  相似文献   

8.
染色体外DNA在酵母细胞衰老中的作用   总被引:1,自引:0,他引:1  
细胞衰老的影响因素甚多,机制复杂。近年来已发现酵母染色体外DNA在细胞衰老中具有重要作用,并认为细胞的衰老受控于一种特定的染色体外DNA复制的次数,具有精确的时间控制机制[1、2]。1.染色体外DNA与衰老的关系酵母染色体外存在大小不等的rDNA环,称为染色体外rDNA环(extrachromo-somalrDNAcircle,ERC)。已发现衰老的酵母细胞中含有丰富的ERC,而年轻酵母细胞中的ERC则很少。芽殖酵母中含有人类Werner氏综合征(一种早老症)WRN基因的同源序列——SGS1基因…  相似文献   

9.
酵母细胞周期及其调控   总被引:5,自引:0,他引:5  
酵母菌是一类多形的、不运动的、单细胞的真核微生物的统称。多数酵母菌都以出芽方式进行繁殖,称为芽殖酵母,也有少数种类的酵母以二分裂方式进行繁殖,称为裂殖酵母,例如粟酒裂殖酵母(&hizosaccha-roapcesPombe).芽殖酵母是研究细胞周期GI向S期过渡调控机制的好材料;而裂殖酵母为研究GZ向M期过渡调节的典型材料.下面简要介绍酵母细胞周期及其调控机制.1$母细胞周期酵母细胞周期是由四个连续的时期组成,即:M期(有丝分裂期,包括核分裂和胞质分裂)、GI期(介于有丝分裂期与DNA合成之间的间歇期)、S期(DNA合成期)和…  相似文献   

10.
封面故事     
线粒体是真核细胞中十分重要的细胞器,它密切影响着细胞能量的供应、钙离子浓度的稳态以及细胞凋亡等过程。因此,线粒体的恰当分布关乎细胞的功能和生存,这就涉及到线粒体的运动和固定。在极化细胞(如神经细胞和芽殖酵母)中,线粒体运  相似文献   

11.
12.
13.
Active transport and localized translation of the ASH1 mRNA at the bud tip of the budding yeast Saccharomyces cerevisiae is an essential process that is required for the regulation of the mating type switching. ASH1 mRNA localization has been extensively studied over the past few years and the core components of the translocation machinery have been identified. It is composed of four localization elements (zipcodes), within the ASH1 mRNA, and at least three proteins, She1p/Myo4p, She2p and She3p. Whereas the movement of the RNA can be attributed to direct interaction with myosin, the regulation of the RNA expression is less well understood. Recent insights have revealed a role for translation that might have a key function in the regulation of Ash1 protein sorting.  相似文献   

14.
The localization of ASH1 mRNA to the distal tip of budding yeast cells is essential for the proper regulation of mating type switching in Saccharomyces cerevisiae. A localization element that is predominantly in the 3'-untranslated region (UTR) can direct this mRNA to the bud. Using this element in the three-hybrid in vivo RNA-binding assay, we identified a protein, Loc1p, that binds in vitro directly to the wild-type ASH1 3'-UTR RNA, but not to a mutant RNA incapable of localizing to the bud nor to several other mRNAs. LOC1 codes for a novel protein that recognizes double-stranded RNA structures and is required for efficient localization of ASH1 mRNA. Accordingly, Ash1p gets symmetrically distributed between daughter and mother cells in a loc1 strain. Surprisingly, Loc1p was found to be strictly nuclear, unlike other known RNA-binding proteins involved in mRNA localization which shuttle between the nucleus and the cytoplasm. We propose that efficient cytoplasmic ASH1 mRNA localization requires a previous interaction with specific nuclear factors.  相似文献   

15.
Polarized growth in the budding yeast Saccharomyces cerevisiae depends upon the asymmetric localization and enrichment of polarity and secretion factors at the membrane prior to budding. We examined how these factors (i.e., Cdc42, Sec4, and Sro7) reach the bud site and found that their respective mRNAs localize to the tip of the incipient bud prior to nuclear division. Asymmetric mRNA localization depends upon factors that facilitate ASH1 mRNA localization (e.g., the 3' untranslated region, She proteins 1 to 5, Puf6, actin cytoskeleton, and a physical association with She2). mRNA placement precedes protein enrichment and subsequent bud emergence, implying that mRNA localization contributes to polarization. Correspondingly, mRNAs encoding proteins which are not asymmetrically distributed (i.e., Snc1, Mso1, Tub1, Pex3, and Oxa1) are not polarized. Finally, mutations which affect cortical endoplasmic reticulum (ER) entry and anchoring in the bud (myo4Delta, sec3Delta, and srp101) also affect asymmetric mRNA localization. Bud-localized mRNAs, including ASH1, were found to cofractionate with ER microsomes in a She2- and Sec3-dependent manner; thus, asymmetric mRNA transport and cortical ER inheritance are connected processes in yeast.  相似文献   

16.
17.
18.
The sorting of the Ash1 protein to the daughter nucleus of Saccharomyces cerevisiae in late anaphase of the budding cycle correlates with the localization of ASH1 mRNA at the bud tip [1] [2]. Although the 3' untranslated region (3' UTR) of ASH1 is sufficient to localize a reporter mRNA, it is not necessary, a result which indicates that other sequences are involved [1]. We report the identification of three additional cis-acting elements in the coding region. Each element alone, when fused to a lacZ reporter gene, was sufficient for the localization of the lacZ mRNA reporter to the bud. A fine-structure analysis of the 3' UTR element showed that its function in mRNA localization did not depend on a specific sequence but on the secondary and tertiary structure of a minimal 118 nucleotide stem-loop. Mutations in the stem-loop that affect the localization of the lacZ mRNA reporter also affected the formation of the localization particles, in living cells, composed of a green fluorescent protein (GFP) complexed with lacZ-ASH1-3' UTR mRNA [3]. A specific stem-loop in the 3' UTR of the ASH1 mRNA is therefore required for both localization and particle formation, suggesting that complex formation is part of the localization mechanism. An analysis on one of the coding-region elements revealed a comparable stem-loop structure with similar functional requirements.  相似文献   

19.
Myo4p, a single-headed and nonprocessive class V myosin in budding yeast, transports >20 different mRNAs asymmetrically to the bud. Here, we determine the features of the Myo4p motor that are necessary for correct localization of ASH1 mRNA to the daughter cell, a process that also requires the adapter protein She3p and the dimeric mRNA-binding protein She2p. The rod region of Myo4p, but not the globular tail, is essential for correct localization of ASH1 mRNA, confirming that the rod contains the primary binding site for She3p. The requirement for both the rod region and She3p can be bypassed by directly coupling the mRNA-binding protein She2p to Myo4p. ASH1 mRNA was also correctly localized when one motor was bound per dimeric She2p, or when two motors were joined together by a leucine zipper. Because multiple mRNAs are cotransported to the bud, it is likely that this process involves multiple motor transport regardless of the number of motors per zip code. Our results show that the most important feature for correct localization is the retention of coupling between all the members of the complex (Myo4p–She3p–She2p–ASH1 mRNA), which is aided by She3p being a tightly bound subunit of Myo4p.  相似文献   

20.
RNA localization is a widely utilized strategy employed by cells to spatially restrict protein function. In Saccharomyces cerevisiae asymmetric sorting of mRNA to the bud has been reported for at least 24 mRNAs. The mechanism by which the mRNAs are trafficked to the bud, illustrated by ASH1 mRNA, involves recognition of cis-acting localization elements present in the mRNA by the RNA-binding protein, She2p. The She2p/mRNA complex subsequently associates with the myosin motor protein, Myo4p, through an adapter, She3p. This ribonucleoprotein complex is transported to the distal tip of the bud along polarized actin cables. While the mechanism by which ASH1 mRNA is anchored at the bud tip is unknown, current data point to a role for translation in this process, and the rate of translation of Ash1p during the transport phase is regulated by the cis-acting localization elements. Subcellular sorting of mRNA in yeast is not limited to the bud; certain mRNAs corresponding to nuclear-encoded mitochondrial proteins are specifically sorted to the proximity of mitochondria. Analogous to ASH1 mRNA localization, mitochondrial sorting requires cis-acting elements present in the mRNA, though trans-acting factors involved with this process remain to be identified. This review aims to discuss mechanistic details of mRNA localization in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号