首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
糖尿病(diabetes mellitus,DM)是由多种环境因素、遗传因素联合作用导致慢性高血糖状态的全身代谢性疾病,易并发形成心血管、视网膜、肾脏、神经等病变,发病机制复杂,严重危害人类健康。目前DNA损伤、修复在DM及其并发症的发生发展和防治过程中的作用受到重视,现就DNA损伤与修复过程中多聚(ADP核糖)聚合酶[Poly(ADP-ribose)polymerase,PARP]功能、8-羟基鸟嘌呤(8-hydroxy-2’-deoxyguanosine,8-Ohd G)修复通路、X射线修复交叉互补基因(X-ray repair cross-complementing gene,XRCC)多态性变异、Nei核酸内切酶Ⅷ样蛋白1(nei endonucleaseⅧ-like 1,NEIL1)基因多态性变异和Chk基因细胞周期检测点激酶(checkpoint kinase,Chk)多态性变异与DM及并发症的关系展开综述。  相似文献   

2.
DNA双链断裂修复与重症联合免疫缺陷   总被引:1,自引:0,他引:1  
Wang KY  Zhao YH  Li WG 《生理科学进展》2008,39(2):182-184
DNA双链断裂(double-strand breaks, DSBs)是细胞DNA损伤的主要类型,它的修复通过同源重组(HR)和非同源末端连接(NHEJ)两种机制实现.NHEJ是人和哺乳动物细胞DSBs修复的重要通路,主要由DNA依赖性蛋白激酶(DNA-PK)、X射线修复交叉互补蛋白4(XRCC4)、DNA连接酶Ⅳ、Artemis、XLF/Cernunnos和其它DNA损伤修复辅助因子组成.本文重点介绍了NHEJ机制主要成分的特性及其功能,以及这些组分的基因发生突变或缺失所引起的DSBs修复缺陷与辐射敏感性重症联合免疫缺陷(radiosensitive severe combined immunodeficiencies, RS-SCIDs).  相似文献   

3.
ERCC1 多态性与肺癌铂类化疗耐药的关系研究   总被引:1,自引:0,他引:1  
目的:研究DNA切除修复交叉互补基因1(excision repair cross-complementing gene1,ERCC1)单核苷酸多态性与非小细胞肺癌铂类药物化疗敏感性的关系。方法:应用基因测序方法检测89例以铂类药物为主要化疗方案的非小细胞肺癌患者的ERCC1 Asn118Asn基因型,,比较不同基因型与化疗疗效的关系。结果:89例患者化疗总有效率为29.2%。携带ERCC1 CC基因型、含至少一个变异基因型(TC和TT基因型)患者的有效率分别为38.5%和61.5%(X2=2.151,p=0.142),基因型在化疗有效组和无效组之间的分布无差异(p>0.05)。结论:ERCC1Asn118Asn单核苷酸多态性可能与非小细胞肺癌对铂类药物化疗的敏感性无关。  相似文献   

4.
DNA双链断裂是真核生物最严重的DNA损伤形式.如果断裂的DNA双链无法及时修复,将可能导致细胞死亡.非同源末端连接途径在真核生物DSBs修复中起重要作用.综述了真核生物NHEJ途径中核心蛋白质Ku、DNA-PKcs、DNA连接酶IV、XRCC4、ARTEMIS和XIF等因子的结构和功能,并简要介绍了NHEJ修复途径的分子机制,其中涉及到DSBs位点蛋白复合体组装的两种模型.  相似文献   

5.
非同源末端连接(nonhomologous end joining, NHEJ)是动物基因组DNA双链断裂(double-strand break, DSB)修复的优选途径,通过与同源重组(homologous recombination, HR)竞争DSB靶点,进而抑制HR的效率。为提高HR效率,本研究针对猪NHEJ通路修复关键因子PNKP、LIG4和NHEJ1的编码序列,设计并合成相应的靶向小干扰RNA (small interfering RNA, siRNA),组成若干对RNAi (RNA interference)系统,将RNAi系统与报告质粒SSA-GFP reporter、HDR -GFP system和ssODN-GFP system共转染至猪胎儿成纤维细胞(porcine fetal fibroblasts, PFFs),检测敲低上述NHEJ关键修复因子后对HR的影响。RNAi结果显示,针对PNKPLIG4NHEJ1设计的siRNA均可显著敲低PNKPLIG4NHEJ1基因的表达(P<0.05)。选择干扰效果最好的siRNA与报告载体共转染PFFs,结果表明干扰PNKP基因表达后可显著提高单链退火(single strand annealing, SSA)修复效率、双链或单链DNA介导的同源重组定向修复(homology-directed repair, HDR)效率分别为55.7%、37.4%和73.1% (P<0.05),而干扰LIG4NHEJ1分别提高双链和单链介导的HDR效率为37.5% 和 76.9% (P<0.05)。  相似文献   

6.
RNA介导的CRISPR/Cas9基因编辑系统由单链引导RNA(sgRNA)与核酸酶Cas9构成。在细胞内,sgRNA能够按照碱基互补配对的原则引导Cas9与靶点结合,由Cas9切割目标DNA,造成双链DNA断裂(double stranded break, DSB)。在随后的DNA修复过程中,细胞主要进行非同源末端连接(non-homologous end joining,NHEJ)或在有修复模板存在的情况下进行重组修复(homology directed repair, HDR)。如果将CRISPR/Cas9系统以及修复模板通过显微注射的方式导入大鼠的胚胎内,就能借助细胞的修复机制实现大鼠胚胎的基因编辑,由此构建各种基因修饰大鼠模型。本文详细介绍了利用CRISPR/Cas9基因编辑技术构建大鼠模型的具体操作步骤,以期为相关领域的科研人员提供一种大鼠基因修饰模型的构建方法。  相似文献   

7.
目的:研究DNA切除修复交叉互补基因1(excision repair cross-complementing gene1,ERCC1)单核苷酸多态性与非小细胞肺癌铂类药物化疗敏感性的关系。方法:应用基因测序方法检测89例以铂类药物为主要化疗方案的非小细胞肺癌患者的ERCC1 Asn118Asn基因型,,比较不同基因型与化疗疗效的关系。结果:89例患者化疗总有效率为29.2%。携带ERCC1 CC基因型、含至少一个变异基因型(TC和TT基因型)患者的有效率分别为38.5%和61.5%(X2=2.151,p=0.142),基因型在化疗有效组和无效组之间的分布无差异(p〉0.05)。结论:ERCC1Asn118Asn单核苷酸多态性可能与非小细胞肺癌对铂类药物化疗的敏感性无关。  相似文献   

8.
乳腺癌易感基因1(BRCA1)是一个肿瘤抑制基因.BRCA1参与DNA末端切除、细胞周期调控以及染色体修饰等来维护基因组的稳定性.有研究表明,它能够促进正确的DNA双链断裂(DSBs)修复,如同源重组修复(HDR)和经典的非同源末端连接(C-NHEJ);而抑制错误性的DSB修复,如单链退火修复(SSA)和非经典的末端连接(A-EJ);其机制是通过与某些DNA修复相关蛋白质的相互作用来引导DSB修复.目前,BRCA1在DSB修复通路中的作用机制尚未完全明确,仍有待进一步的研究.本文主要阐述BRCA1在DSB各修复通路中是如何发挥其引导作用的.  相似文献   

9.
真核DNA连接酶(DNA ligase)通过催化ATP依赖的双链DNA切口连接而在DNA复制、重组和修复过程中发挥了重要作用.DNA连接酶Ⅲ(Lig3)是一种独特性的连接酶,既可定位于细胞核,又可定位于线粒体.Lig3通过与DNA修复蛋白XRCC1作用而参与了碱基切除修复和其他单链断裂修复.但Lig3以XRCC1不依赖方式在线粒体DNA完整性保持方面发挥了更为重要的作用.这些研究为Lig3功能和DNA修复研究提供了新的视野.  相似文献   

10.
着色性干皮病F蛋白 (xeroderma pigmentosum group F, XPF) 和切除修复交叉互补组1蛋白 (excision repair cross complementing group 1, ERCC1) 组成一种结构特异性的核酸内切酶 (XPF-ERCC1)复合物,参与DNA链间交联 (interstrand crosslink, ICL) 损伤修复。其中,XPF蛋白的去泛素化修饰对DNA损伤修复的影响尚未见报道。本工作主要研究泛素特异性蛋白酶15 (ubiquitin-specific protease 15, USP15) 对XPF的稳定性及ICL修复的影响。本研究通过蛋白质质谱和Western印迹法分析发现,XPF蛋白与USP15存在相互作用,进而使XPF蛋白去泛素化修饰;采用CRISPR-Cas9技术构建USP15基因敲除的HeLa细胞株 (USP15 KO) 并进行Western印迹分析,结果显示,敲除组XPF蛋白水平低于对照组 (P<0.001)。克隆形成试验显示,在ICL诱导剂顺铂 (cisplatin,DDP) 和丝裂霉素C (mitomycin, MMC) 的作用下,USP15基因敲除的HeLa细胞增殖能力显著降低 (P<0.01)。本研究表明,去泛素化酶USP15是一种重要的DNA修复调节因子,该酶通过稳定XPF蛋白促进由XPF-ERCC1介导的ICL修复。本研究为改善ICL诱导剂类抗癌药物的耐药性提供了理论依据,并为肿瘤的治疗提供了潜在的新靶点。  相似文献   

11.
DNA topoisomerase I (Top1) is converted into a cellular poison by camptothecin (CPT) and various endogenous and exogenous DNA lesions. In this study, we used X-ray repair complementation group 1 (XRCC1)-deficient and XRCC1-complemented EM9 cells to investigate the mechanism by which XRCC1 affects the cellular responses to Top1 cleavage complexes induced by CPT. XRCC1 complementation enhanced survival to CPT-induced DNA lesions produced independently of DNA replication. CPT-induced comparable levels of Top1 cleavage complexes (single-strand break (SSB) and DNA-protein cross-links (DPC)) in both XRCC1-deficient and XRCC1-complemented cells. However, XRCC1-complemented cells repaired Top1-induced DNA breaks faster than XRCC1-deficient cells, and exhibited enhanced tyrosyl DNA phosphodiesterase (Tdp1) and polynucleotide kinase phosphatase (PNKP) activities. XRCC1 immunoprecipitates contained Tdp1 polypeptide, and both Tdp1 and PNKP activities, indicating a functional connection between the XRCC1 single-strand break repair pathway and the repair of Top1 covalent complexes by Tdp1 and PNKP.  相似文献   

12.
XRCC4 plays a crucial role in the nonhomologous end joining (NHEJ) pathway of DNA double-strand break repair acting as a scaffold protein that recruits other NHEJ proteins to double-strand breaks. Phosphorylation of XRCC4 by protein kinase CK2 promotes a high affinity interaction with the forkhead-associated domain of the end-processing enzyme polynucleotide kinase/phosphatase (PNKP). Here we reveal that unphosphorylated XRCC4 also interacts with PNKP through a lower affinity interaction site within the catalytic domain and that this interaction stimulates the turnover of PNKP. Unexpectedly, CK2-phosphorylated XRCC4 inhibited PNKP activity. Moreover, the XRCC4·DNA ligase IV complex also stimulated PNKP enzyme turnover, and this effect was independent of the phosphorylation of XRCC4 at threonine 233. Our results reveal that CK2-mediated phosphorylation of XRCC4 can have different effects on PNKP activity, with implications for the roles of XRCC4 and PNKP in NHEJ.  相似文献   

13.
Aprataxin, aprataxin and PNKP-like factor (APLF) and polynucleotide kinase phosphatase (PNKP) are key DNA-repair proteins with diverse functions but which all contain a homologous forkhead-associated (FHA) domain. Their primary binding targets are casein kinase 2-phosphorylated forms of the XRCC1 and XRCC4 scaffold molecules which respectively coordinate single-stranded and double-stranded DNA break repair pathways. Here, we present the high-resolution X-ray structure of a complex of phosphorylated XRCC4 with APLF, the most divergent of the three FHA domain family members. This, combined with NMR and biochemical analysis of aprataxin and APLF binding to singly and multiply-phosphorylated forms of XRCC1 and XRCC4, and comparison with PNKP reveals a pattern of distinct but overlapping binding specificities that are differentially modulated by multi-site phosphorylation. Together, our data illuminate important differences between activities of the three phospho-binding domains, in spite of a close evolutionary relationship between them.  相似文献   

14.
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.  相似文献   

15.
XRCC1 plays a key role in the repair of DNA base damage and single-strand breaks. Although it has no known enzymatic activity, XRCC1 interacts with multiple DNA repair proteins and is a subunit of distinct DNA repair protein complexes. Here we used the yeast two-hybrid genetic assay to identify mutant versions of XRCC1 that are selectively defective in interacting with a single protein partner. One XRCC1 mutant, A482T, that was defective in binding to polynucleotide kinase phosphatase (PNKP) not only retained the ability to interact with partner proteins that bind to different regions of XRCC1 but also with aprataxin and aprataxin-like factor whose binding sites overlap with that of PNKP. Disruption of the interaction between PNKP and XRCC1 did not impact their initial recruitment to localized DNA damage sites but dramatically reduced their retention there. Furthermore, the interaction between PNKP and the DNA ligase IIIα-XRCC1 complex significantly increased the efficiency of reconstituted repair reactions and was required for complementation of the DNA damage sensitivity to DNA alkylation agents of xrcc1 mutant cells. Together our results reveal novel roles for the interaction between PNKP and XRCC1 in the retention of XRCC1 at DNA damage sites and in DNA alkylation damage repair.  相似文献   

16.
XRCC1 plays a central role in mammalian single-strand break repair. Although it has no enzymatic activity of its own, it stimulates the activities of polynucleotide kinase/phosphatase (PNKP), and this function is enhanced by protein kinase CK2 mediated phosphorylation of XRCC1. We have previously shown that non-phosphorylated XRCC1 stimulates the kinase activity of PNKP by increasing the turnover of PNKP. Here we extend our analysis of the XRCC1-PNKP interaction taking into account the phosphorylation of XRCC1. We demonstrate that phosphorylated and non-phosphorylated XRCC1 interact with different regions of PNKP. Phosphorylated XRCC1 binds with high affinity (Kd = 3.5 nM and 1 : 1 stoichiometry) to the forkhead associated (FHA) domain, while non-phosphorylated XRCC1 binds to the catalytic domain of PNKP with lower affinity (Kd = 43.0 nM and 1 : 1 stoichiometry). Under conditions of limited enzyme concentration both forms of XRCC1 enhance the activities of PNKP, but the effect is more pronounced with phosphorylated XRCC1, particularly for the kinase activity of PNKP. The stimulatory effect of phosphorylated XRCC1 on PNKP can be totally inhibited by the presence of excess FHA domain polypeptide, but non-phosphorylated XRCC1 is not susceptible to competition by the FHA domain. Thus, XRCC1 can stimulate PNKP by two independent mechanisms.  相似文献   

17.
The termini of DNA strand breaks induced by internal and external factors often require processing before missing nucleotides can be replaced by DNA polymerases and the strands rejoined by DNA ligases. Polynucleotide kinase/phosphatase (PNKP) serves a crucial role in the repair of DNA strand breaks by catalyzing the restoration of 5'-phosphate and 3'-hydroxyl termini. It participates in several DNA repair pathways through interactions with other DNA repair proteins, notably XRCC1 and XRCC4. Recent studies have highlighted the physiological importance of PNKP in maintaining the genomic stability of normal tissues, particularly developing neural cells, as well as enhancing the resistance of cancer cells to genotoxic therapeutic agents.  相似文献   

18.
Repair of DNA-protein crosslinks and oxidatively damaged DNA base lesions generates intermediates with nicks or gaps with abnormal and blocked 3′-phosphate and 5′-OH ends that prevent the activity of DNA polymerases and ligases. End cleaning in mammalian cells by Tdp1 and PNKP produces the conventional 3′-OH and 5′-phosphate DNA ends suitable for completion of repair. This repair function of PNKP is facilitated by its binding to the scaffold protein XRCC1, and phosphorylation of XRCC1 by CK2 at several consensus sites enables PNKP binding and recruitment to DNA damage. To evaluate this documented repair process, a phosphorylation mutant of XRCC1, designed to eliminate PNKP binding, was stably expressed in Xrcc1−/− mouse fibroblast cells. Analysis of PNKP-GFP accumulation at micro-irradiation induced damage confirmed that the XRCC1 phosphorylation mutant failed to support efficient PNKP recruitment, whereas there was rapid recruitment in cells expressing wild-type XRCC1. Recruitment of additional fluorescently-tagged repair factors PARP-1-YFP, GFF-XRCC1, PNKP-GFP and Tdp1-GFP to micro-irradiation induced damage was assessed in wild-type XRCC1-expressing cells. PARP-1-YFP recruitment was best fit to two exponentials, whereas kinetics for the other proteins were fit to a single exponential. The similar half-times of recruitment suggest that XRCC1 may be recruited with other proteins possibly as a pre-formed complex. Xrcc1−/− cells are hypersensitive to the DNA-protein cross-link inducing agent camptothecin (CPT) and the DNA oxidative agent H2O2 due in part to compromised PNKP-mediated repair. However, cells expressing the PNKP interaction mutant of XRCC1 demonstrated marked reversal of CPT hypersensitivity. This reversal represents XRCC1-dependent repair in the absence of the phosphorylation-dependent PNKP recruitment and suggests either an XRCC1-independent mechanism of PNKP recruitment or a functional back-up pathway for cleaning of blocked DNA ends.  相似文献   

19.
Microcephaly with early-onset, intractable seizures and developmental delay (MCSZ) is a hereditary disease caused by mutations in polynucleotide kinase/phosphatase (PNKP), a DNA strand break repair protein with DNA 5'-kinase and DNA 3'-phosphatase activity. To investigate the molecular basis of this disease, we examined the impact of MCSZ mutations on PNKP activity in vitro and in cells. Three of the four mutations currently associated with MCSZ greatly reduce or ablate DNA kinase activity of recombinant PNKP at 30°C (L176F, T424Gfs48X and exon15Δfs4X), but only one of these mutations reduces DNA phosphatase activity under the same conditions (L176F). The fourth mutation (E326K) has little impact on either DNA kinase or DNA phosphatase activity at 30°C, but is less stable than the wild-type enzyme at physiological temperature. Critically, all of the MCSZ mutations identified to date result in ~ 10-fold reduced cellular levels of PNKP protein, and reduced rates of chromosomal DNA strand break repair. Together, these data suggest that all four known MCSZ mutations reduce the cellular stability and level of PNKP protein, with three mutations likely ablating cellular DNA 5'-kinase activity and all of the mutations greatly reducing cellular DNA 3'-phosphatase activity.  相似文献   

20.
Aprataxin (APTX) is the causative gene product for early-onset ataxia with ocular motor apraxia and hypoalbuminemia (EAOH/AOA1). In our previous study, we found that APTX interacts with X-ray repair cross-complementing group 1 (XRCC1), a scaffold protein with an essential role in single-strand DNA break repair (SSBR). To further characterize the functions of APTX, we determined the domains of APTX and XRCC1 required for the interaction. We demonstrated that the 20 N-terminal amino acids of the FHA domain of APTX are important for its interaction with the C-terminal region (residues 492-574) of XRCC1. Moreover, we found that poly (ADP-ribose) polymerase-1 (PARP-1) is also co-immunoprecipitated with APTX. These findings suggest that APTX, together with XRCC1 and PARP-1, plays an essential role in SSBR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号