首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of changing the transpiration rate on leaf waterpotential and water balance has been examined to show if permeabilityof the plant (predominantly the roots) is constant or varieswith the transpiration rate. Measurements of leaf effectivethickness, water potential, transpiration, and uptake of waterby roots were made on sunflower, barley, and maize plants grownin solution culture and subjected to a range of atmosphericconditions and root treatments: cooling, low osmotic potential,and removal of part of the root system. Leaf water potential changed little under a wide range of atmosphericconditions and rates of water flux in the three species, sothat the root permeability to water increases as the rate oftranspiration, and therefore flow across the root surface, increases.Equality between uptake and loss of water and thereby maintenanceof constant leaf water potential is assisted by stomatal changes,which appear to be in response to conditions at or in the rootrather than a direct response to changes in bulk leaf waterpotential.  相似文献   

2.
A field study was conducted to determine how atmospheric and edaphic conditions influenced the water relations of avocado trees (Persea americana Mill. cv. Bacon). With high and low levels of incident photosynthetically active radiation (PAR, 400–700 nm wave length), and either wet or dry soil, leaf conductance decreased as the absolute humidity difference from leaf to air increased. For any water stress treatment, conductance was higher at high PAR than at low PAR. Both conductance and transpiration were higher in well-watered trees than in stressed trees, and in prestressed trees levels were intermediate to unstressed and stressed trees. A model for water flux through the soil-plant-atmosphere continuum was used to examine the relationship of leaf xylem pressure potential to transpiration in well-watered trees and in trees stressed by dry soil. There was a close linkage between leaf xylem pressure potential and transpiration in unstressed and previously stressed trees with high or low PAR, i.e. similar potentials occurred with equivalent transpiration regardless of previous treatment or time of day. In stressed trees, xylem pressure potential was lower than in unstressed trees both during the day and night, and at a given transpiration rate the potential was lower after 1400 h than before that time. The model indicated that in stressed trees xylem pressure potential was uncoupled from transpiration, presumably because of altered resistance in the soil-root portion of the transport system.  相似文献   

3.
Intact plants of okra (Hibiscus esculentus) were chilled at6°C in the light, and leaf diffusion resistance (LDR) andleaf water potential measured. The response of the LDR of excisedleaves to fresh weight loss and, separately, exogenous abscisicacid (ABA) supply, was also studied at 6°C and 30°C.The influence of two pre-treatments upon these measurementswas studied. The two pre-treatments consisted of the impositionof a period of water stress at 30°C prior to measurement(followed by re-watering) or the spraying of the leaves withABA. It was found that plants that had been grown in a highhumidity environment continuously (designated control plants)had stomata that were very unresponsive to both water loss fromthe leaves and to exogenous ABA at both temperatures (6°Cand 30°C). Chilling the control plants resulted in rapidwilting and concomitant decline in leaf water potential. A pre-treatmentof water stress prior to chilling did not alter or reduce therate of development of chilling injury, nor did the pre-treatmentincrease the responsiveness of stomata at 6°C to water lossor exogenous ABA. However, spraying the leaves with ABA priorto chilling reduced the severity and delayed the onset of chillinginjury. Stomatal response to water stress and exogenous ABAwas increased by the spraying pre-treatment. These results arediscussed in relation to previous studies of the phenomenonof stomatal locking open at low temperature and the effect ofpre-treatments upon the development of chill-resistance. Key words: Water stress, chilling, stomata  相似文献   

4.
5.
IDLE  D. B. 《Annals of botany》1977,41(5):959-968
The drying of detached leaves may be measured by the loss ofweight taking place over a period of time, and expressed byleaf conductance kl as a function of relative water contentRWC. A parameter is defined which is proportional to the tendencyof the leaf to dry, and expresses high conductance, low finalRWC, or both combined. Observations have been made on Zea maysand on three species of Solanum with the intention of exploringthe possibility of using this technique for comparative physiology.The position of the leaves on the parent shoot has been foundto affect the drying characteristics of the leaves, and theearly values of leaf conductance are reduced when evaporationis brought about by higher values of water vapour density deficit.Both leaf sampling and the evaporative conditions must be standardizedif the method is to yield useful results for comparative purposes.  相似文献   

6.
When leaf discs of Xanthium strumarium L. a C3 plant, or Zeamays L. a C4 plant, are incubated in 1-aminocyclopropane-l-carboxylicacid (ACC) in closed flasks, ethylene is released. The rateof ethylene release appears to be dependent on the levels oflight and CO2 available for photosynthesis in the tissues. In Xanthium the rate of ethylene release is lower in the lightthan in the dark regardless of the presence or absence of addedbicarbonate as a source of CO2. The inhibition of ethylene releaseis most apparent in the absence of added bicarbonate (i.e. atthe CO2 compensation point), and at light intensities sufficientto saturate photosynthesis (had the CO2 level in the test flaskbeen maintained). In contrast, light dramatically promotes therate of ethylene release from Zea leaf tissue when the CO2 levelis maintained above the CO2 compensation point. The rate ofethylene release from either Xanthium or Zea, incubated withor without added bicarbonate, does not appear to be alteredby further increasing the light intensity above the minimallevels sufficient to saturate photosynthesis. In the closed system used in these studies and at a light intensitysufficient to saturate photosynthesis, Xanthium and Zea leaftissue both appear to release comparable amounts of ethylenefrom ACC when the data is expressed on a chlorophyll basis.However, in Xanthium the rate of ethylene release is similarin light and dark, while in Zea the rate in the light is muchgreater than in the dark when the data is expressed either ona leaf area or on a chlorophyll basis. It is suggested thatthe different responses of these tissues to light/dark transientsmay reflect differences in their ability to metabolize ACC and/ordifferences in their ability to retain and metabolize ethyleneitself.  相似文献   

7.
A ventilated diffusion porometer was modified and adapted for simultaneous measurements of leaf resistance and photosynthesis (using 14C). The system enables measurements to be made under field and laboratory conditions with different concentrations of CO2 and vapor pressure gradients between the evaporating surfaces inside the leaf and the external atmosphere. The leaf is subjected to the porometer's atmosphere only for short periods (up to 30 seconds) and it is assumed that stomata are not affected. Establishing the linear regression of the effect of CO2 concentration on net photosynthesis makes it possible to extrapolate for CO2 compensation point, to calculate the overall resistance to CO2 and the mesophyll resistance to CO2.  相似文献   

8.
The Diffusion Resistance and Water Status of Leaves of Beta vulgaris   总被引:1,自引:0,他引:1  
Pot-grown sugar-beet plants were deprived of water in two experimentsuntil they wilted completely. Leaf resistance to water-vapourtransfer was measured directly with a diffusion porometer andcompared with values calculated from measurements of transpiration.There was good agreement between the two estimates. Leaf turgor-pressuredecreased only gradually due, apparently, to an increase intissue-solute concentration with increasing water deficit. Relationshipsbetween leaf water potential, soil water potential, and leafresistance were established and the effective control of transpirationby small changes in leaf resistance was clearly demonstrated.  相似文献   

9.
The rates of CO2 assimilation by potted spray carnation plants(cv. Cerise Royalette) were determined over a wide range oflight intensities (45–450 W m–2 PAR), CO2 concentrations(200–3100 vpm), and leaf temperatures (5–35 °C).Assimilation rates varied with these factors in a way similarto the response of single leaves of other temperate crops, althoughthe absolute values were lower. The optimal temperature forCO2 assimilation was between 5 and 10 °C at 45 W m–2PAR but it increased progressively with increasing light intensityand CO2 concentration up to 27 °C at 450 W m–2 PARand 3100 vpm CO2 as expressed by the equation TOpt = –6.47-h 2.336 In G + 0.031951 where C is CO2 concentration in vpmand I is photo-synthetically active radiation in W m–2.CO2 enrichment also increased stomatal resistance, especiallyat high light intensities. The influence of these results on optimalization of temperaturesand CO2 concentrations for carnation crops subjected to dailylight variation, and the discrepancy between optimal temperaturesfor growth and net photosynthesis, are discussed briefly  相似文献   

10.
Transpiration rate and leaf transfer resistance to water vapor loss were determined under a range of leaf temperatures for Quercus macrocarpa, Q. velutina, Q. alba, Q. rubra, and Acer saccharum. Transfer resistance increased with rising leaf temperatures between 20 and 40°C in all species, but the rate of increase in resistance was greatest in species which normally occupy xeric sites. Increased transfer resistance with rising leaf temperature may be significant in preventing rapid desiccation of leaves under the large evaporative stress imposed by high leaf temperature.  相似文献   

11.
The optimal temperature for the nitrogenase activity in the terrestrial cyanobacterium N. flagelliforme was 21–28℃; the optimal water content in thallus was 1000--1500%; the light saturation was between 150–200 J·m-2·s-1. The thallus of N. flagelliforme is extremely sensitive to higher temperature in wet. Long-term exposure of wetted thallus to high temperature at 45℃ causes rapid declination of its nitr0genase activity to zero. Under dry condition, N. flagelliforme is extremely resistant to extensive desiccation and heat exposure. Dry thalli exposed to 55℃, 5 hours daily for 21 days, show no marked change in its nitrogenase activity. The thalli preincubated in wet condition for 4–5 days, are highly sensitive against desication. However, repeated drying/wetting cycles induce a slow and gradual increase of its nitrogenase activity and improve the resistance of its nitrogenase activity against desiccation. High concentrated NaC1 salt solution (0.17–0.43 mol/L) depletes nitrogenase activity of the thalli quickly. Above result shows that N. flagelliforme is not able to resist against salt. The physiological characteristics of nitrogen fixation of cyanobacterium N. flagelliforme may be eonsidered as a result of drought adaptation of the terrestrial ecological condition aad the drying westting cycle is perhaps a necessary factor to maintain its growth.  相似文献   

12.
Improvements of thermocouple hygrometric techniques for in situleaf water potential measurement in the field now allows forcontinuous monitoring of water potential in response to an externalperturbation, such as leaf excision. Using Citrus jambhiri plants,measured leaf water potentials of completely excised leaf portionsimmediately increased when the petiole was excised or incisionswere made either transverse or parallel to the midrib. Incisionsparallel to the midrib were on the side nearest the hygrometeror opposite it if preceded by a petiole excision. Midrib incisionswere 100–150 mm long with the nearest cut edge being 20–50mm from the hygrometer cavity. All excisions were such thatleaf tissue was removed from the leaf with water potential onone of the leaf portions being measured continuously prior toand after excising. The peak increase in measured water potentialof the excised leaf portions ranged between 20 kPa and 80 kPabut averaged 50 kPa. In uncovered leaves, particularly underfield conditions with the associated high evaporative demand,measured leaf water potential declined rapidly after the initialincrease. The increase in measured water potential immediatelyfollowing various types of excision was confirmed for dark andlight conditions (laboratory and field respectively) using bothpsychrometric and dewpoint modes and occurred for secondaryexcisions, but to a lesser extent. Discovery of this phenomenonimplies that water potential measured on detached leaves maynot always represent accurately in situ leaf water potential. Key words: Leaf water potential, Thermocouple hygrometers, Leaf excision effects  相似文献   

13.
The effect of 21% O2 and 3% O2 on the CO2 exchange of detached wheat leaves was measured in a closed system with an infrared carbon dioxide analyzer. Temperature was varied between 2° and 43°, CO2 concentration between 0.000% and 0.050% and light intensity between 40 ft-c and 1000 ft-c. In most conditions, the apparent rate of photosynthesis was inhibited in 21% O2 compared to 3% O2. The degree of inhibition increased with increasing temperature and decreasing CO2 concentration. Light intensity did not alter the effect of O2 except at light intensities or CO2 concentrations near the compensation point. At high CO2 concentrations and low temperature, O2 inhibition of apparent photosynthesis was absent. At 3% O2, wheat resembled tropical grasses in possessing a high rate of photosynthesis, a temperature optimum for photosynthesis above 30°, and a CO2 compensation point of less than 0.0005% CO2. The effect of O2 on apparent photosynthesis could be ascribed to a combination of stimulation of CO2 production during photosynthesis, and inhibition of photosynthesis itself.  相似文献   

14.
15.
The Effect of Surface Wetting on the Transpiration of Leaves   总被引:1,自引:0,他引:1  
  相似文献   

16.
Cotton plants, Gossypium hirsutum L. were grown in a growth room under incident radiation levels of 65, 35, and 17 Langleys per hour to determine the effects of vapor pressure deficits (VPD's) of 2, 9, and 17 mm Hg at high soil water potential, and the effects of decreasing soil water potential and reirrigation on transpiration, leaf temperature, stomatal activity, photosynthesis, and respiration at a VPD of 9 mm Hg.

Transpiration was positively correlated with radiation level, air VPD and soil water potential. Reirrigation following stress led to slow recovery, which may be related to root damage occurring during stress. Leaf water potential decreased with, but not as fast as, soil water potential.

Leaf temperature was usually positively correlated with light intensity and negatively correlated with transpiration, air VPD, and soil water. At high soil water, leaf temperatures ranged from a fraction of 1 to a few degrees above ambient, except at medium and low light and a VPD of 19 mm Hg when they were slightly below ambient, probably because of increased transpirational cooling. During low soil water leaf temperatures as high as 3.4° above ambient were recorded. Reirrigation reduced leaf temperature before appreciably increasing transpiration. The upper leaf surface tended to be warmer than the lower at the beginning of the day and when soil water was adequate; otherwise there was little difference or the lower surface was warmer. This pattern seemed to reflect transpiration cooling and leaf position effects.

Although stomata were more numerous in the lower than the upper epidermis, most of the time a greater percentage of the upper were open. With sufficient soil water present, stomata opened with light and closed with darkness. Fewer stomata opened under low than high light intensity and under even moderate, as compared with high soil water. It required several days following reirrigation for stomata to regain original activity levels.

Apparent photosynthesis of cotton leaves occasionally oscillated with variable amplitude and frequency. When soil water was adequate, photosynthesis was nearly proportional to light intensity, with some indication of higher rates at higher VPD's. As soil water decreased, photosynthesis first increased and then markedly decreased. Following reirrigation, photosynthesis rapidly recovered.

Respiration was slowed moderately by decreasing soil water but increased before watering. Respiration slowed with increasing leaf age only on leaves that were previously under high light intensity.

  相似文献   

17.
THE final mean size, cell number, and cell size of the threelower internodes and of a leaflet of the three lower true leaveshave been determined from seedlings grown in darkness or inlight intensities of 0.1, 1, 10, 100, or 1,000 f.c. The results indicate that the effect of light may be dividedinto two phases, a sensitive effect on cell multiplication anda less sensitive one on cell enlargement. Growth in 0.1 f.c.results in an increase in leaf area over that attained in darknessmainly due to an increase in the number of cells. Further andmore marked increases in area at 100 and 1,000 f.c. are dueto an effect on cell size. Low intensities also greatly reduceinternode length, again owing to an effect on cell multiplication.Both internode length and the number of cells are graduallyfurther reduced as the intensity is raised to 1,000 f.c. Celllength is reduced in the first (basal) internode by 10 f.c.and above, but in the second is reduced only at 1,000 f.c. Inthe third internode the cells are longer at all intensitiesthan those in the etiolated seedling. It is suggested that the basic effect of light is modified bydifferences between the successive leaves and internodes alreadypresent in the ungerminated seed, and also by a factor tendingto promote growth of the leaves and upper internodes. This factoris taken to be growth substances produced under the action oflight, or an increased supply of raw materials as a consequenceof the suppression of the lower internodes and the beginningof photosynthesis. Cell multiplication and cell enlargement are possibly controlledthrough two distinct pigment systems, with peaks of maximumefficiency in the red and blue regions of the spectrum respectively.  相似文献   

18.
Diurnal changes in leaf water potential and leaf thickness ofwell-watered citrus trees were found to be highly correlated.Midday decreases in leaf thickness of about 30–35 µm reflected midday decreases in leaf water potential of about1.1–1.3 MPa from predawn values. Leaf water potentialwas also correlated with changes in leaf-to-air temperaturedifference and ambient vapour pressure deficit. Leaf thicknessas well as leaf to air temperature difference could possiblybe used to monitor leaf water status continuously as an indicatorof citrus tree water stress.  相似文献   

19.
The growth and development of soybeans (Glycine max L. cv. Amsoy) was studied at soil matric potentials of ?0.1 to ?1.0 bars. Chlorophyll, photosynthesis, and leaf nitrogen per plant was greatest at ?4 bars leaf water potential. Leaf area, number of internodes, plant height and dry weight of vegetative parts declined as leaf water potential decreased from ?2 to ?19 bars. Nitrogen content and nitrate reductase activity per g fresh weight determined the percentage protein of individual seeds but nitrogen content and nitrate reductase activity per plant determined the amount of total seed protein. The protein synthesized in the seed changed little in amino acid composition with changes in leaf water potential. Leaf water potentials above or below ?4 bars decreased yield, total protein and total lipid but plants produced the largest percentage of individual seed protein at ?19 bars leaf water potential.  相似文献   

20.
Effects of changes in temperature around roots on water uptake by roots and leaf transpiration were studied in Leucaena leucocephala (Lam.) de Wit., a subtropical woody plant species, and in Zea mays L. When the temperature around roots was rapidly lowered from 25 ℃ to 15 ℃, the water uptake by the roots and leaf transpiration were stimulated significantly within a short period ( 14 min). However, this effect did not occur when the cooling time was prolonged neither did if occur when the temperature around the roots was resumed from 15 ℃ to 25 ℃. Both the hydraulic conductivity of roots and leaf transpiration were increased substantially at first (within 20 min)and then decreased steadily to a level lower than those of the control in which the roots were continuous exposed to a low temperature ( 15 ℃ ). Low temperature also promoted the biosynthesis of ABA in roots and enhanced the xylem ABA concentration, but such stimulation did not occur untill about 30 min after cooling treatment, leaf transpiration was reduced markedly, but the hydraulic conductivity of roots increased when the root system was treated with exogenous ABA. It was suggested that some mechanisms other than ABA may be involved in the short-time cryostimulation of water uptake by roots and leaf transpiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号