首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K W Wirtz  P F Devaux  A Bienvenue 《Biochemistry》1980,19(14):3395-3399
2-Stearoyl spin-labeled phosphatidylcholine (PC*) has been introduced into the phosphatidylcholine exchange protein from bovine liver and its electron spin resonance (ESR) spectrum determined. The spin-labeled group in the PC*- exchange protein complex was strongly immobilized. Addition of sodium deoxycholate micelles released PC* from its binding site, producing a mobile signal. This was also observed when micelles of lysophosphatidylcholine and vesicles of phosphatidic acid were added, indicating that the exchange protein can insert its endogenous PC* into interfaces devoid of phosphatidylcholine. ESR spectroscopy was used to measure transfer of PC* from spin-labeled "donor" vesicles to unlabeled "acceptor" vesicles as described by Machida & Ohnishi [Machida, K., & Ohnishi, S. (1978) Biochim. Biophys. Acta 507, 156-164]. The donor vesicles consisted of PC* and phosphatidic acid (75:25 mol%) and the acceptor vesicles of phosphatidylethanolamine and phosphatidic acid (81:19 mol%). Addition of exchange protein catalyzed a net transfer of PC* from donor to acceptor vesicles. This transfer proceeded until the acceptor vesicles contained approximately 2 mol% of PC*. A spontaneous transfer of PC* was not observed. As for the mode of action, it appears that the exchange protein, after insertion of its endogenous PC* into the acceptor, leaves the interface without a bound phospholipid molecule yet continues to shuttle PC* from donor to acceptor.  相似文献   

2.
The monolayer technique has been used to study the transfer of [14C]phosphatidylinositol from the monolayer to phosphatidylcholine vesicles. An equivalent transfer rate was found for egg phosphatidylcholine, dioleoylphosphatidylcholine, dielaidoylphosphatidylcholine and dipalmitoylphosphatidylcholine. A reduced transfer rate was found for a shorter-chain derivative, dimyristoylphosphatidylcholine, and for species with two polyunsaturated fatty acid chains such as dilinoleoylphosphatidylcholine, diheptadecadienoylphosphatidylcholine, dilinolenoylphosphatidylcholine and diether and dialkyl derivatives. No activity was found for 1,3-dipalmitoylphosphatidylcholine. The presence of up to 5 mol% phosphatidylinositol in egg phosphatidylcholine vesicles had no effect on the transfer rate. Introduction of more than 5 mol% phosphatidylinositol or phosphatidic acid into the phosphatidylcholine vesicles gradually decreased the rate of phosphatidylinositol transfer from the monolayer. 20 mol% acidic phospholipid was nearly completely inhibitory. Transfer experiments between separate monolayers of phosphatidylcholine and phosphatidylinositol showed that the protein-bound phosphatidylcholine is readily exchanged for phosphatidylinositol, but the protein-bound phosphatidylinositol exchange for phosphatidylcholine occurs at a 20-times lower rate. The release of phosphatidylinositol is dependent on the lipid composition and the concentration of charged lipid in the acceptor membrane, but also on the ratio between donor and acceptor membranes. The main transfer protein from bovine brain which transfer phosphatidylinositol and phosphatidylcholine transfers also phosphatidylglycerol, but not phosphatidylserine or phosphatidic acid. The absence of significant changes in the surface pressure indicate that the phosphatidylinositol and phosphatidylcholine transfer is not accompanied by net mass transfer.  相似文献   

3.
An electrically active event that has been observed in native rod outer segment disk membranes can be reconstituted into membrane vesicles containing purified rhodopsin and defined phospholipids. The magnitude of this charge-transfer event, as estimated using spin-labeled derivatives of hydrophobic ions, is a function of the phospholipid composition. In reconstituted membranes containing rhodopsin and egg phosphatidylcholine, the charge transferred during this event is approximately 10% that measured in the native system. The addition of 20 mol% egg phosphatidylethanolamine, phosphatidic acid or brain phosphatidylserine returns the magnitude of the charge transfer to within 60 to 100% of the native activity. The response seen in the reconstituted membrane system is consistent with a previously proposed interfacial charge-transfer mechanism.  相似文献   

4.
Phosphatidylinositol and phosphatidylcholine are transferred between bilayer membranes in the presence of a specific phosphatidylinositol transfer protein isolated from bovine brain. The effects of pH, ionic strength and lipid composition on the rate of transfer of these phospholipids between small unilamellar vesicles have been investigated. At low ionic strength, phosphatidylinositol transfer between vesicles prepared from phosphatidylcholine and 5 mol% phosphatidylinositol was maximal at about pH 5 and moderately dependent on hydrogen ion concentration in more alkaline regions. A similar dependence on pH was noted for phosphatidylcholine transfer between membranes containing phosphatidylcholine or mixtures of phosphatidylcholine and 5 mol% phosphatidylinositol, phosphatidic acid, phosphatidylglycerol, phosphatidylethanolamine or stearylamine. The rate of transfer between anionic vesicles was somewhat higher than that between neutral or cationic vesicles. At higher ionic strength the transfer reactions in neutral and alkaline regions were less sensitive to pH. Phospholipid transfers between vesicles containing 5 mol% of anionic lipid increased sharply as ionic strength decreased below 0.1. In contrast, phosphatidylcholine transfer between membranes which contained only zwitterionic phospholipids or 5 mol% stearylamine was unaffected by variations of ionic strength. Irrespective of the lipid composition of membranes, pH affected both the apparent Km and Vmax, while ionic strength generally affected the apparent Vmax. These results indicate a significant role of electrostatic interactions in the phospholipid transfer catalyzed by phosphatidylinositol transfer protein.  相似文献   

5.
6.
Purified Acetylcholine Receptor (AcChR) from Torpedo has been reconstituted at low (approximately 1:3500) and high (approximately 1:560) protein to phospholipid molar ratios into vesicles containing egg phosphatidylcholine, cholesterol, and different dimyristoyl phospholipids (dimyristoyl phosphatidylcholine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid) as probes to explore the effects of the protein on phospholipid organization by differential scanning calorimetry, infrared, and fluorescence spectroscopy. All the experimental results indicate that the presence of the AcChR protein, even at the lower protein to phospholipid molar ratio, directs lateral phase separation of the monoanionic phosphoryl form of the phosphatidic acid probe, causing the formation of specific phosphatidic acid-rich lipid domains that become segregated from the bulk lipids and whose extent (phosphatidic acid sequestered into the domain, out of the total population in the vesicle) is protein-dependent. Furthermore, fluorescence energy transfer using the protein tryptophan residues as energy donors and the fluorescence probes trans-parinaric acid or diphenylhexatriene as acceptors, establishes that the AcChR is included in the domain. Other dimyristoyl phospholipid probes (phosphatidylcholine, phosphatidylserine, phosphatidylglycerol) under identical conditions could not mimic the protein-induced domain formation observed with the phosphatidic acid probe and result in ideal mixing of all lipid components in the reconstituted vesicles. Likewise, in the absence of protein, all the phospholipid probes, including phosphatidic acid, exhibit ideal mixing behavior. Since phosphatidic acid and cholesterol have been implicated in functional modulation of the reconstituted AcChR, it is suggested that such a specific modulatory role could be mediated by domain segregation of the relevant lipid classes.  相似文献   

7.
Phospholipid transfer protein catalyzes the transfer of phospholipids between bilayer membranes. A general model is developed for describing the kinetics of this process. While previous models derive detailed expressions only for the initial rate of transfer from donor to acceptor membranes, this model takes into account donor-to-donor, acceptor-to-acceptor, and acceptor-to-donor transfers, in addition to the usual donor-to-acceptor transfer. The apparent rate of transfer along any of these specific routes is given as the product of the total rate of transfer (the sum of the rates of transfer along all four routes) and a probability function uniquely defined for each route. The model explains adequately the effects of membrane concentration on phospholipid transfer activity as well as the consequences of varying membrane surface charge and size. Using bovine liver phosphatidylcholine transfer protein, the model is applied to the kinetic analysis of phosphatidylcholine transfer between two populations of small unilamellar vesicles. Rates of protein-catalyzed phosphatidylcholine transfer between vesicles with identical phosphatidic acid content (2 or 6 mol%) are determined experimentally as a function of total vesicle concentration to calculate apparent dissociation constants and maximum rates of transfer; apparent rates of transfer between various combinations of vesicles containing 2 or 6 mol% phosphatidic acid are then deduced from the derived velocity expression. Reasonably good agreement is seen between theoretical apparent rate-vesicle concentration relationships and those measured experimentally. The results support the general treatment of the kinetics of protein-mediated phospholipid transfer and permit an estimation of useful kinetic parameters.  相似文献   

8.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicle was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they was transferred to the nonspin-labeled acceptor vesicles. A lower transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles for a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

9.
The interaction of the specific sugar residue in ginsenosides with egg phosphatidylcholine vesicles was investigated by ESR spectrometry using phosphatidic acid spin-labeled at the polar head groups. Ginsenoside-Rc, which has an alpha-L-arabinofuranose residue and agglutinability toward egg yolk phosphatidylcholine vesicles (Fukuda, K. et al. (1985) Biochim. Biophys. Acta 820, 199-206), caused the restriction of the segmental motion of spin-labeled phosphatidic acid in egg phosphatidylcholine vesicles, indicating that the saponin interacted with the polar head groups of vesicles. Other ginsenosides-Rb2, Rb1, Rd and p-nitrophenyl glycoside derivatives which have less or no agglutinability were also investigated in the same manner. Only ginsenoside-Rb2 and p-nitrophenyl alpha-L-arabinofuranoside which have the specific sugar residue (arabinose) showed a strong interaction with the polar head groups of vesicles. To gain an insight into the mechanism of agglutination by ginsenoside-Rc, the interaction with the fatty acyl groups was also studied by using phosphatidylcholine spin-labeled at the fatty acyl groups. Ginsenoside-Rc increased the order parameter of the spin-labeled phosphatidylcholine, indicating that the saponin was inserted into lipid bilayers. In other saponins investigated, only ginsenoside-Rb2 interacted with the fatty acyl part of vesicles. The process of expression of agglutination by ginsenoside-Rc was discussed on the basis of the ESR studies.  相似文献   

10.
The ability of human plasma phospholipid transfer protein to transfer L-alpha-[14C]dipalmitoylphosphatidylcholine (DPPC) from donor vesicles to acceptor high-density lipoproteins (HDL) was examined, using vesicles of different compositions and sizes, and native or chemically modified HDL. Phosphatidylcholine (PC) transfer was inhibited by both cholesterol and sphingomyelin incorporation into egg-PC vesicles. On a molar basis, cholesterol inhibited transfer about 5-fold more than sphingomyelin; however, the effects of both lipids on the fluidity of the vesicle membrane (measured by fluorescence polarization of diphenylhexatriene), were closely correlated with their effects on PC transfer activity. Increase in vesicle size, and decrease in bilayer curvature, also reduced transfer: the largest vesicles had no transfer activity at all. Addition of phosphatidic acid up to 17 mol% had no effect on PC transfer. HDL apolipoprotein lysyl residues were chemically modified by reductive methylation, citraconylation, or acetoacetylation. The effects of modification on the apolipoprotein structure and on the HDL particle were assessed by intrinsic fluorescence measurements, SDS-polyacrylamide gel electrophoresis patterns, and gel chromatography. Only acetoacetylation significantly affected any of these parameters. The ability of HDL to accept PC in the absence of phospholipid transfer protein decreased with an increase in apolipoprotein negative charge while, in the presence of phospholipid transfer protein, the acceptor ability of HDL increased up to 1.7-fold with an initial increase in negative charge and then decreased, ultimately to zero, upon extensive modification.  相似文献   

11.
The major coat protein of bacteriophage M13 was incorporated in mixed dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (80/20 w/w) vesicles probed with different spin-labeled phospholipids, labeled on the C-14 atom of the sn-2 chain. The specificity for a series of phospholipids was determined from a motionally restricted component seen in the electron spin resonance (ESR) spectra of vesicles with the coat protein incorporated. At 30 degrees C and pH 8, the fraction of motionally restricted phosphatidic acid spin-label is 0.36, 0.52, and 0.72 for lipid/protein ratios of 18, 14, and 9 mol/mol, respectively. The ESR spectra, analyzed by digital subtraction, resulted in a phospholipid preference following the pattern cardiolipin = phosphatidic acid greater than stearic acid = phosphatidylserine = phosphatidylglycerol greater than phosphatidylcholine = phosphatidylethanolamine. The specificities found are related to the composition of the target Escherichia coli cytoplasmic membrane.  相似文献   

12.
The rate of transfer of spin-labeled phospholipid from donor vesicles of sonicated 1-acyl-2-(10-doxylstearoyl)-sn-glycero-3-phosphocholine to other vesicles was determined as a function of content of cytochrome P-450 and the phosphatidylcholine/phosphatidylethanolamine ratio in the acceptor vesicles. The transfer rate was measured as an increase in intensity that resulted from a decrease in the line width in the EPR spectrum of the spin-labeled phospholipids as they were transferred to the nonspin-labeled acceptor vesicles. A lowe transfer rate was observed for acceptor vesicles of pure egg phosphatidylcholine vesicles than for vesicles of a mixture of phosphatidylcholine and phosphatidylethanolamine. The presence of cytochrome P-450 in the acceptor vesicles further increased the transfer rate. Those alterations in the mole ratios of the protein and the two phospholipids that made the bilayer of the reconstituted vesicles more like the membrane of the endoplasmic reticulum resulted in an increase in phospholipid-transfer rate. The mole ratios of components that produce high phospholipid-transfer rates were similar to those that in an earlier study produced a 31P-NMR spectrum characteristic of a nonbilayer phase. These findings suggest that, in the membrane of the endoplasmic reticulum, phospholipid exchange may be an important element in function and interaction with other intracellular organelles.  相似文献   

13.
The interaction of the specific sugar residue in ginsenosides with egg phosphatidylcholine vesicles was investigated by ESR spectrometry using phosphatidic acid spin-labeled at the polar head groups. Ginsenoside-Rc, which has an α-l-arabinofuranose residue and agglutinability toward egg yolk phosphatidylcholine vesicles (Fukuda, K. et al. (1985) Biochim. Biophys. Acta 820, 199–206), caused the restriction of the segmental motion of spin-labeled phosphatidic acid in egg phosphatidylcholine vesicles, indicating that the saponin interacted with the polar head groups of vesicles. Other ginsenosides-Rb2, Rb1, Rd and p-nitrophenyl glycoside derivatives which have less or no agglutinability were also investigated in the same manner. Only ginsenoside-Rb2 and p-nitrophenyl α-l-arabinofuranoside which have the specific sugar residue (arabinose) showed a strong interaction with the polar head groups of vesicles. To gain an insight into the mechanism of agglutination by ginsenoside-Rc, the interaction with the fatty acyl groups was also studied by using phosphatidylcholine spin-labeled at the fatty acyl groups. Ginsenoside-Rc increased the order parameter of the spin-labeled phosphatidylcholine, indicating that the saponin was inserted into lipid bilayers. In other saponins investigated, only ginsenoside-Rb2 interacted with the fatty acyl part of vesicles. The process of expression of agglutination by ginsenoside-Rc was discussed on the basis of the ESR studies.  相似文献   

14.
Ramakrishnan M  Jensen PH  Marsh D 《Biochemistry》2003,42(44):12919-12926
Alpha-synuclein is a small presynaptic protein, which is linked to the development of Parkinson's disease. Alpha-synuclein partitions between cytosolic and vesicle-bound states, where membrane binding is accompanied by the formation of an amphipathic helix in the N-terminal section of the otherwise unstructured protein. The impact on alpha-synuclein of binding to vesicle-like liposomes has been studied extensively, but far less is known about the impact of alpha-synuclein on the membrane. The interactions of alpha-synuclein with phosphatidylglycerol membranes are studied here by using spin-labeled lipid species and electron spin resonance (ESR) spectroscopy to allow a detailed analysis of the effect on the membrane lipids. Membrane association of alpha-synuclein perturbs the ESR spectra of spin-labeled lipids in bilayers of phosphatidylglycerol but not of phosphatidylcholine. The interaction is inhibited at high ionic strength. The segmental motion is hindered at all positions of spin labeling in the phosphatidylglycerol sn-2 chain, while still preserving the chain flexibility gradient characteristic of fluid phospholipid membranes. Direct motional restriction of the lipid chains, resulting from penetration of the protein into the hydrophobic interior of the membrane, is not observed. Saturation occurs at a protein/lipid ratio corresponding to approximately 36 lipids/protein added. Alpha-synuclein exhibits a selectivity of interaction with different phospholipid spin labels when bound to phosphatidylglycerol membranes in the following order: stearic acid > cardiolipin > phosphatidylcholine > phosphatidylglycerol approximately phosphatidylethanolamine > phosphatidic acid approximately phosphatidylserine > N-acyl phosphatidylethanolamine > diglyceride. Accordingly, membrane-bound alpha-synuclein associates at the interfacial region of the bilayer where it may favor a local concentration of certain phospholipids.  相似文献   

15.
S Wang  E Martin  J Cimino  G Omann  M Glaser 《Biochemistry》1988,27(6):2033-2039
A resonance energy transfer method was developed to study the distribution of phospholipids around integral membrane proteins. The method involved measuring the extent of energy transfer from tryptophan residues of the proteins to different phospholipids labeled with a dansyl moiety in the fatty acid chain. No specific interactions were observed between gramicidin and dansyl-labeled phosphatidylcholine, phosphatidylethanolamine, or phosphatidic acid. The results were consistent with a random distribution of each phospholipid in the bilayer in the presence of gramicidin. However, a redistribution of both gramicidin and dansyl-labeled phospholipids was easily observed when a phase separation was induced by adding Ca2+ to vesicles made up of phosphatidylcholine and phosphatidic acid. Polarization measurements showed that in the presence of Ca2+ a rigid phosphatidic acid rich region and a more fluid phosphatidylcholine-rich region were formed. Energy-transfer measurements from gramicidin to either dansylphosphatidylcholine or dansylphosphatidic acid showed gramicidin preferentially partitioned into the phosphatidylcholine-rich regions. Energy-transfer measurements were also carried out with D-beta-hydroxybutyrate dehydrogenase reconstituted in a vesicle composed of phosphatidylcholine, phosphatidylethanolamine, and phosphatidic acid. Although the enzyme has a specific requirement for phosphatidylcholine for activity, the extent of energy transfer decreased in the order dansylphosphatidic acid, dansylphosphatidylcholine, dansylphosphatidylethanolamine. Thus, the enzyme reorganized the phospholipids in the vesicle into a nonrandom distribution.  相似文献   

16.
The size and size distribution of unilamellar phospholipid vesicles present in unsonicated phosphatidic acid and mixed phosphatidic acid/phosphatidylcholine dispersions were determined by gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy. The vesiculation in these dispersions was induced by a transient increase in pH as described previously (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). The resulting phospholipid dispersions are heterogeneous consisting of small unilamellar vesicles (average radius r < 50 nm) and large unilamellar vesicles (average r ranging from about 50 to 500 nm). The smallest vesicles with r = 11 ± 2 nm are observed with dispersions of pure phosphatidic acid, the population of these vesicles amounting to about 80% of the total lipid. With increasing phosphatidylcholine content the radius of the small unilamellar vesicles increases and at the same time the population of small unilamellar vesicles decreases. The average radius of small unilamellar vesicles present in phosphatidic acid/phosphatidylcholine dispersions (mole ratio, 1:1) is 17.5 ± 2 nm, the population of these vesicles amounting to about 70% of the total lipid. By a combination of gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy it was possible to characterize the large unilamellar vesicles. This population is heterogeneous with its mean radius also increasing with increasing phosphatidylcholine content. After separating the large unilamellar vesicles from small unilamellar vesicles on Sepharose 4B it can be shown by quasi-elastic light scattering that in pure phosphatidic acid dispersions 80–90% of the large unilamellar vesicle population consist of vesicles with a mean radius of 170 nm. In mixed phosphatidic acid/phosphatidylcholine dispersions this radius increases to about 265 nm as the phosphatidylcholine content is raised to 90 mol%.  相似文献   

17.
Spin-labeled pig heart cytochromes c singly modified at Met-65, Tyr-74 and at one of the lysine residues, Lys-72 or Lys-73, were investigated by the ESR method under conditions of different ligand and redox states of the heme and at various pH values. Replacement of Met-80 by the external ligand, cyanide, was shown to produce a sharp increase in the mobility of all the three bound labels while reduction of the spin-labeled ferricytochromes c did not cause any marked changes in their ESR spectra. In the pH range 6-13, two conformational transitions in ferricytochrome c were observed which preceded its alkaline denaturation: the first with pK 9.3 registered by the spin label at the Met-65 position, and the second with pK 11.1 registered by the labels bound to Tyr-74 and Lys-72(73). The conformational changes in the 'left-hand part' of ferricytochrome c are most probably induced in both cases by the exchange of internal protein ligands at the sixth coordination site of the heme.  相似文献   

18.
A new, simple and versatile method to measure phospholipid transfer has been developed, based on the use of a fluorescent phospholipid derivative, 1-acyl-2-parinaroylphosphatidylcholine. Vesicles prepared of this phospholipid show a low level of fluorescence due to interactions between the fluorescent groups. When phospholipid transfer protein and vesicles consisting of non-labeled phosphatidylcholine are added the protein catalyzes an exchange of phosphatidylcholine between the labeled donor and non-labeled acceptor vesicles. The insertion of labeled phosphatidylcholine into the non-labeled vesicles is accompanied by an increase in fluorescence due to abolishment of self-quenching. The initial rate of fluorescence enhancement was found to be proportional to the amount of transfer protein added. This assay was applied to determine the effect of membrane phospholipid composition on the activity of the phosphatidylcholine-, phosphatidylinositol- and non-specific phospholipid transfer proteins. Using acceptor vesicles of egg phosphatidylcholine and various amounts of phosphatidic acid it was observed that the rate of phosphatidylcholine transfer was either stimulated, inhibited or unaffected by increased negative charge depending on the donor to acceptor ratio and the protein used. In another set of experiments acceptor vesicles were prepared of phosphatidylcholine analogues in which the ester bonds were replaced with ether bonds or carbon-carbon bonds. Assuming that only a strictly coupled exchange between phosphatidylcholine and analogues gives rise to the observed fluorescence increase, orders of substrate preference could be established for the phosphatidylcholine- and phosphatidylinositol transfer proteins.  相似文献   

19.
Transfer of phospholipid from the envelope of hemagglutinating virus of Japan (HVJ) to erythrocyte (RBC) membrane and the virus-induced transfer of phospholipid between RBC membranes were studied using spin-labeled phosphatidylcholine (PC). The transfer of PC from membranes labeled densely with PC to unlabeled membranes was followed by the peak height increase in the electron spin resonance spectrum. The two kinds of transfer reactions took place very rapidly as reported previously. To obtain further details, the transfer reactions were studied with HVJ, HVJ inactivated by trypsin, HVJ harvested early, HVJ grown in fibroblast cells, the fibroblast HVJ activated by trypsin, influenza virus, and glutaraldehyde-treated RBCs. The results demonstrated that the viral F glycoprotein played a crucial role in the transmembrane phospholipid movements as well as in the fusion and hemolysis of RBCs. The transfer from HVJ to RBC's occurred partially through an exchange mechanism not accompanying the envelope fusion. This was shown by a decrease in the exchange broadening of the electron spin resonance spectrum of released spin-labeled HVJ (HVJ) and also by an increase in the ratio of PC to viral proteins incorporated into RBC membranes. HVJ modified RBC membrane so as to be able to exchange its phospholipids with those of inactive membranes such as fibroblast HVJ, influenza virus, glutaraldehyde-treated RBC'S, and phosphatidylcholine vesicles. HVJ affected the fluidity of RBC membranes markedly, the environments around PC being much fluidized. The virus-induced fusion was discussed based on close apposition of the membranes by HANA proteins and on the destabilization and fluidization of RBC membranes by F glycoproteins.  相似文献   

20.
The interaction of the major acidic bovine seminal plasma protein, PDC-109, with dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by spin-label electron spin resonance spectroscopy. Studies employing phosphatidylcholine spin labels, bearing the spin labels at different positions along the sn-2 acyl chain indicate that the protein penetrates into the hydrophobic interior of the membrane and interacts with the lipid acyl chains up to the 14th C atom. Binding of PDC-109 at high protein/lipid ratios (PDC-109:DMPC = 1:2, w/w) results in a considerable decrease in the chain segmental mobility of the lipid as seen by spin-label electron spin resonance spectroscopy. A further interesting new observation is that, at high concentrations, PDC-109 is capable of (partially) solubilizing DMPC bilayers. The selectivity of PDC-109 in its interaction with membrane lipids was investigated by using different spin-labeled phospholipid and steroid probes in the DMPC host membrane. These studies indicate that the protein exhibits highest selectivity for the choline phospholipids phosphatidylcholine and sphingomyelin under physiological conditions of pH and ionic strength. The selectivity for different lipids is in the following order: phosphatidylcholine approximately sphingomyelin > or = phosphatidic acid (pH 6.0) > phosphatidylglycerol approximately phosphatidylserine approximately and rostanol > phosphatidylethanolamine > or = N-acyl phosphatidylethanolamine > cholestane. Thus, the lipids bearing the phosphocholine moiety in the headgroup are clearly the lipids most strongly recognized by PDC-109. However, these studies demonstrate that this protein also recognizes other lipids such as phosphatidylglycerol and the sterol androstanol, albeit with somewhat reduced affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号