首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Most of the symplastic water transport in plants occurs via aquaporins, but the extent to which aquaporins contribute to plant water status under favorable growth conditions and abiotic stress is not clear. To address this issue, we constitutively overexpressed the Arabidopsis plasma membrane aquaporin, PIP1b, in transgenic tobacco plants. Under favorable growth conditions, PIP1b overexpression significantly increased plant growth rate, transpiration rate, stomatal density, and photosynthetic efficiency. By contrast, PIP1b overexpression had no beneficial effect under salt stress, whereas during drought stress it had a negative effect, causing faster wilting. Our results suggest that symplastic water transport via plasma membrane aquaporins represents a limiting factor for plant growth and vigor under favorable conditions and that even fully irrigated plants face limited water transportation. By contrast, enhanced symplastic water transport via plasma membrane aquaporins may not have any beneficial effect under salt stress, and it has a deleterious effect during drought stress.  相似文献   

2.
Plant aquaporins: novel functions and regulation properties   总被引:2,自引:0,他引:2  
Maurel C 《FEBS letters》2007,581(12):2227-2236
Aquaporins are water channel proteins of intracellular and plasma membranes that play a crucial role in plant water relations. The present review focuses on the most recent findings concerning the molecular and cellular properties of plant aquaporins. The mechanisms of transport selectivity and gating (i.e. pore opening and closing) have recently been described, based on aquaporin structures at atomic resolution. Novel dynamic aspects of aquaporin subcellular localisation have been uncovered. Also, some aquaporin isoforms can transport, besides water, physiologically important molecules such as CO(2), H(2)O(2), boron or silicon. Thus, aquaporins are involved in many great functions of plants, including nutrient acquisition, carbon fixation, cell signalling and stress responses.  相似文献   

3.
4.
水通道或水通道蛋白是水分运动的主要通道.以RD28 cDNA和RD28抗体为探针证明了蚕豆(Vicia fabaL.)保卫细胞中存在水通道蛋白,并以气孔运动为指标,结合抗体和抑制剂处理证明水通道蛋白是水分运动的主要通道.研究表明编码质膜水通道蛋白的RD28转录体在叶片保卫细胞、叶肉细胞和维管束中高表达,尤以保卫细胞中最多;荧光免疫染色和Confocal显微镜观察表明,RD28抗体反应主要位于保卫细胞质膜.进一步采用RD28抗体和水通道蛋白抑制剂--HgCl2 (25μmol/L)处理可抑制壳梭孢素(FC)、光照诱导的气孔开放和原生质体体积膨胀以及ABA诱导的气孔关闭,但这种抑制作用可以被水通道抑制剂的逆转剂β-巯基乙醇(ME)逆转.表明蚕豆保卫细胞中存在水通道蛋白并参与蚕豆保卫细胞的运动过程.  相似文献   

5.
Plant aquaporins   总被引:1,自引:0,他引:1  
  相似文献   

6.
Aquaporins are membrane-intrinsic proteins that facilitate membrane transport of water and small solutes or even gases. Aquaporin genes are found in almost all living organisms. In plants the proteins account for water uptake and transport as well as CO2 availability for photosynthesis. These processes are subjected to diurnal or circadian regimes. Expression and even function of aquaporins also follows day - night rhythms. Significance of aquaporin function in chronobiology has been provided by recent publications, which are summarised here. Examples of the significance of aquaporins in processes related to chronobiology are given for root water transport and leaf movement in several plant species.  相似文献   

7.
Aquaporins have been assumed to be selective for water alone, and aquaglyceroporins are accepted as carrying water and small uncharged solutes including glycerol. This review presents an expanded view of aquaporins as channels with more complex mechanisms of regulation and diverse repertoires of substrate permeabilities than were originally appreciated in the early establishment of the field. The role of aquaporins as dual water and gated ion channels is likely to have physiological and potentially translational relevance, and can be evaluated with newly developed molecular and pharmacological tools. Ion channel activity has been shown for Aquaporins -0, -1, and -6, Drosphila Big Brain, and plant Nodulin-26. Although the concept of ion channel function in aquaporins remains controversial, research advances are beginning to define not only the ion channel function but also the detailed molecular mechanisms that govern and mediate the multifunctional capabilities. With regard to physiological relevance, the adaptive benefit of expression of ion channel activity in aquaporins, implied by amino acid sequence conservation of the ion channel gating domains, suggests they provide more than water or glycerol and solute transport. Dual ion and water channels are of interest for understanding the modulation of transmembrane fluid gradients, volume regulation, and possible signal transduction in tissues expressing classes of aquaporins that have the dual function capability. Other aquaporin classes might be found in future work to have ion channel activities, pending identification of the possible signaling pathways that could govern activation.  相似文献   

8.
There is strong evidence that aquaporins are central components in plant water relations. Plant species possess more aquaporin genes than species from other kingdoms. According to sequence similarities, four major groups have been identified, which can be further divided into subgroups that may correspond to localization and transport selectivity. They may be involved in compatible solute distribution, gas-transfer (CO2, NH3) as well as in micronutrient uptake (boric acid). Recent advances in determining the structure of some aquaporins gives further details on the mechanism of selectivity. Gating behaviour of aquaporins is poorly understood but evidence is mounting that phosphorylation, pH, pCa and osmotic gradients can affect water channel activity. Aquaporins are enriched in zones of fast cell division and expansion, or in areas where water flow or solute flux density would be expected to be high. This includes biotrophic interfaces between plants and parasites, between plants and symbiotic bacteria or fungi, and between germinating pollen and stigma. On a cellular level aquaporin clusters have been identified in some membranes. There is also a possibility that aquaporins in the endoplasmic reticulum may function in symplasmic transport if water can flow from cell to cell via the desmotubules in plasmodesmata. Functional characterization of aquaporins in the native membrane has raised doubt about the conclusiveness of expression patterns alone and need to be conducted in parallel. The challenge will be to elucidate gating on a molecular level and cellular level and to tie those findings into plant water relations on a macroscopic scale where various flow pathways need to be considered.  相似文献   

9.
10.
BACKGROUND AND AIMS: Drought causes a decline of root hydraulic conductance, which aside from embolisms, is governed ultimately by aquaporins. Multiple factors probably regulate aquaporin expression, abundance and activity in leaf and root tissues during drought; among these are the leaf transpiration rate, leaf water status, abscisic acid (ABA) and soil water content. Here a study is made of how these factors could influence the response of aquaporin to drought. METHODS: Three plasma membrane intrinsic proteins (PIPs) or aquaporins were cloned from Phaseolus vulgaris plants and their expression was analysed after 4 d of water deprivation and also 1 d after re-watering. The effects of ABA and of methotrexate (MTX), an inhibitor of stomatal opening, on gene expression and protein abundance were also analysed. Protein abundance was examined using antibodies against PIP1 and PIP2 aquaporins. At the same time, root hydraulic conductance (L), transpiration rate, leaf water status and ABA tissue concentration were measured. KEY RESULTS: None of the treatments (drought, ABA or MTX) changed the leaf water status or tissue ABA concentration. The three treatments caused a decline in the transpiration rate and raised PVPIP2;1 gene expression and PIP1 protein abundance in the leaves. In the roots, only the drought treatment raised the expression of the three PIP genes examined, while at the same time diminishing PIP2 protein abundance and L. On the other hand, ABA raised both root PIP1 protein abundance and L. CONCLUSIONS: The rise of PvPIP2;1 gene expression and PIP1 protein abundance in the leaves of P. vulgaris plants subjected to drought was correlated with a decline in the transpiration rate. At the same time, the increase in the expression of the three PIP genes examined caused by drought and the decline of PIP2 protein abundance in the root tissues were not correlated with any of the parameters measured.  相似文献   

11.
Regulation of plant aquaporin activity   总被引:21,自引:0,他引:21  
Accumulating evidence indicates that aquaporins play a key role in plant water relations. Plant aquaporins are part of a large and highly divergent protein family that can be divided into four subfamilies according to amino acid sequence similarity. As in other organisms, plant aquaporins facilitate the transcellular movement of water, but, in some cases, also the flux of small neutral solutes across a cellular membrane. Plant cell membranes are characterized by a large range of osmotic water permeabilities, and recent data indicate that plant aquaporin activity might be regulated by gating mechanisms. The factors affecting the gating behaviour possibly involve phosphorylation, heteromerization, pH, Ca2+, pressure, solute gradients and temperature. Regulation of aquaporin trafficking may also represent a way to modulate membrane water permeability. The aim of this review is to integrate recent molecular and biophysical data on the mechanisms regulating aquaporin activity in plant membranes and to relate them to putative changes in protein structure.  相似文献   

12.
The discovery of aquaporins has provided a new basis for studying and interpreting water relations in plants. However, slow progress has been made in elucidating the functional facets of the aquaporin-mediated water pathway in whole plant systems. While increasing experimental evidence suggests that these proteins are directly involved in mediating water homeostasis at varying environmental conditions, only a few attempts have been made to understand their contribution to overall water transport at different developmental stages. By using a chemical inhibitor (HgCl(2)) of aquaporins function, here we present in planta evidence for both diurnal and developmental regulation of aquaporin activity in wheat. We demonstrate that the greatest sensitivity of water flux to pharmacological blockage occurs at the stage of ear emergence and does not coincide with the phenological stage at which the greatest plant water uptake occurs (milky ripeness). The relationship transpiration flux (Q) vs. soil-leaf water potential difference (DeltaPsi(soil-leaves)) revealed a gradual decrease of plant resistance to water flux from tillering to milky ripeness, both in HgCl(2)-treated and untreated control plants. However, the mercury-inhibition of water flux began to gradually increase at ear emergence, suggesting that a larger portion of water moves through aquaporins from this developmental stage on. Although the intercept of the DeltaPsi(soil-leaves)/Q regression line, i.e. the DeltaPsi required to initiate the water flux through the soil-plant-air continuum, was generally not affected by mercury treatment, a significant mercury effect on the intercept was observed at the stage of ear formation. These findings may have important implications for predicting which strategy plants utilize to optimize water use during their life cycle.  相似文献   

13.
The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant–water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Most plant‐based emissions of volatile organic compounds are considered mainly temperature dependent. However, certain oxygenated volatile organic compounds (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in the xylem sap. Yet further understanding on the role of transport has been lacking until present. We used shoot‐scale long‐term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of 3 water‐soluble OVOCs: methanol, acetone, and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the 3 OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of the temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in the xylem sap from their sources in roots and stem to leaves and to ambient air.  相似文献   

15.
植物水通道蛋白生理功能的研究进展   总被引:1,自引:0,他引:1  
自1992年第一个水通道蛋白AQP1被人们认识以来,从植物中分离得到了大量AQPs基因。AQPs在植物体内形成选择性运输水及一些小分子溶质和气体的膜通道,参与介导多个植物生长发育的生理活动,如细胞伸长、气孔运动、种子发育、开花繁殖和逆境胁迫等。就植物水通道蛋白的生理功能进行概述。  相似文献   

16.
Plant aquaporins: Roles in plant physiology   总被引:2,自引:0,他引:2  

Background

Aquaporins are membrane channels that facilitate the transport of water and small neutral molecules across biological membranes of most living organisms.

Scope of review

Here, we present comprehensive insights made on plant aquaporins in recent years, pointing to their molecular and physiological specificities with respect to animal or microbial counterparts.

Major conclusions

In plants, aquaporins occur as multiple isoforms reflecting a high diversity of cellular localizations and various physiological substrates in addition to water. Of particular relevance for plants is the transport by aquaporins of dissolved gases such as carbon dioxide or metalloids such as boric or silicic acid. The mechanisms that determine the gating and subcellular localization of plant aquaporins are extensively studied. They allow aquaporin regulation in response to multiple environmental and hormonal stimuli. Thus, aquaporins play key roles in hydraulic regulation and nutrient transport in roots and leaves. They contribute to several plant growth and developmental processes such as seed germination or emergence of lateral roots.

General significance

Plants with genetically altered aquaporin functions are now tested for their ability to improve plant resistance to stresses. This article is part of a Special Issue entitled Aquaporins.  相似文献   

17.
The role of aquaporins in root water uptake   总被引:42,自引:0,他引:42  
Javot H  Maurel C 《Annals of botany》2002,90(3):301-313
The capacity of roots to take up water is determined in part by the resistance of living tissues to radial water flow. Both the apoplastic and cell-to-cell paths mediate water transport in these tissues but the contribution of cell membranes to the latter path has long been difficult to estimate. Aquaporins are water channel proteins that are expressed in various membrane compartments of plant cells, including the plasma and vacuolar membranes. Plant aquaporins are encoded by a large multigene family, with 35 members in Arabidopsis thaliana, and many of these aquaporins show a cell-specific expression pattern in the root. Mercury acts as an efficient blocker of most aquaporins and has been used to demonstrate the significant contribution of water channels to overall root water transport. Aquaporin-rich membranes may be needed to facilitate intense water flow across root tissues and may represent critical points where an efficient and spatially restricted control of water uptake can be exerted. Roots, in particular, show a remarkable capacity to alter their water permeability over the short term (i.e. in a few hours to less than 2-3 d) in response to many stimuli, such as day/night cycles, nutrient deficiency or stress. Recent data suggest that these rapid changes can be mostly accounted for by changes in cell membrane permeability and are mediated by aquaporins. Although the processes that allow perception of environmental changes by root cells and subsequent aquaporin regulation are nearly unknown, the study of root aquaporins provides an interesting model to understand the regulation of water transport in plants and sheds light on the basic mechanisms of water uptake by roots.  相似文献   

18.
It is well known that the arbuscular mycorrhizal (AM) symbiosis helps the host plant to overcome several abiotic stresses including drought. One of the mechanisms for this drought tolerance enhancement is the higher water uptake capacity of the mycorrhizal plants. However, the effects of the AM symbiosis on processes regulating root hydraulic properties of the host plant, such as root hydraulic conductivity and plasma membrane aquaporin gene expression, and protein abundance, are not well defined. Since it is known that K(+) status is modified by AM and that it regulates root hydraulic properties, it has been tested how plant K(+) status could modify the effects of the symbiosis on root hydraulic conductivity and plasma membrane aquaporin gene expression and protein abundance, using maize (Zea mays L.) plants and Glomus intraradices as a model. It was observed that the supply of extra K(+) increased root hydraulic conductivity only in AM plants. Also, the different pattern of plasma membrane aquaporin gene expression and protein abundance between AM and non-AM plants changed with the application of extra K(+). Thus, plant K(+) status could be one of the causes of the different observed effects of the AM symbiosis on root hydraulic properties. The present study also highlights the critical importance of AM fungal aquaporins in regulating root hydraulic properties of the host plant.  相似文献   

19.
The majority of plants are unable to evade unfavorable conditions such as flooding, salinity, or drought. Therefore, a fine-tuned water homeostasis appears to be of crucial importance for plant survival, and it was assumed that aquaporins play a significant role in these processes. Regulation of plant aquaporin conductivity was suggested to be achieved by a gating mechanism that involves protein phosphorylation under drought stress conditions and protonation after cytosolic acidification during flooding. The effect of protein phosphorylation or protonation of aquaporins was studied on two plasma membrane intrinsic proteins, NtPIP2;1 and NtAQP1 from tobacco, which were heterologously expressed in yeast. Our results on mutated aquaporins with serine-to-alanine exchange indicate that phosphorylation of the two key serine residues did not affect the pH-dependent modification of water permeability. Protonation on a conserved histidine residue decreased water conductivity of NtPIP2;1. Although cells expressing NtPIP2;1 with a replacement of the histidine by an alanine were found to be pH-insensitive with regard to water permeability, these maintain high water transport rates, similar to those obtained under acidic conditions. The data clearly support the role of histidine at 196 as a component of pH-dependent modification of aquaporin-facilitated water transport. The predictions of combined effects from phosphorylation at conserved serines and histidine protonation were not supported by the results of functional analysis. The obtained results challenge the gating model as a general regulation mechanism for plant plasma membrane aquaporins.  相似文献   

20.
The family of aquaporins, also called water channels or major intrinsic proteins, is characterized by six transmembrane domains that together facilitate the transport of water and a variety of low molecular weight solutes. They are found in all domains of life, but show their highest diversity in plants. Numerous studies identified aquaporins as important targets for improving plant performance under drought stress. The phylogeny of aquaporins is well established based on model species like Arabidopsis thaliana, which can be used as a template to investigate aquaporins in other species. In this study we comprehensively identified aquaporin encoding genes in tomato (Solanum lycopersicum), which is an important vegetable crop and also serves as a model for fleshy fruit development. We found 47 aquaporin genes in the tomato genome and analyzed their structural features. Based on a phylogenetic analysis of the deduced amino acid sequences the aquaporin genes were assigned to five subfamilies (PIPs, TIPs, NIPs, SIPs and XIPs) and their substrate specificity was assessed on the basis of key amino acid residues. As ESTs were available for 32 genes, expression of these genes was analyzed in 13 different tissues and developmental stages of tomato. We detected tissue-specific and development-specific expression of tomato aquaporin genes, which is a first step towards revealing the contribution of aquaporins to water and solute transport in leaves and during fruit development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号