首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.  相似文献   

2.
Cold comfort farm: the acclimation of plants to freezing temperatures   总被引:24,自引:1,他引:23  
  相似文献   

3.
4.
5.
Acral melanoma is a subtype of melanoma with distinct epidemiological, clinical and mutational profiles. To define the genomic alterations in acral melanoma, we conducted whole‐genome sequencing and SNP array analysis of five metastatic tumours and their matched normal genomes. We identified the somatic mutations, copy number alterations and structural variants in these tumours and combined our data with published studies to identify recurrently mutated genes likely to be the drivers of acral melanomagenesis. We compared and contrasted the genomic landscapes of acral, mucosal, uveal and common cutaneous melanoma to reveal the distinctive mutational characteristics of each subtype.  相似文献   

6.
DNA microarray technology is a versatile platform that allows rapid genetic analysis to take place on a genome-wide scale and has revolutionized the way cancers are studied. This platform has enabled researchers to characterize mechanisms central to tumorigenesis and understand important molecular events in the multi-step tumor progression model of cutaneous melanoma and other cancers. In melanoma, multiple global gene expression profiling studies using various DNA microarray platforms and various experimental designs have been performed. Each study has been able to capture and characterize either the involvement of a novel pathway or a novel cause-effect-relationship. The use of microarrays to define subclasses, to identify differentially regulated genes within a mutational context to analyze epigenetically regulated genes has resulted in an unprecedented understanding of the biology of cutaneous melanoma that may lead to more accurate diagnosis, more comprehensive prognosis, prediction and more effective therapeutic interventions. Related DNA microarray platforms like array-comparative genomic hybridization (CGH) have also been instrumental to identify many non-random chromosomal alterations; however, studies identifying validated targets as a result of CGH are limited. Thus, there exists significant opportunity to discover novel melanoma genes and translate such discoveries into meaningful clinical endpoints. In this review, we focus on various DNA microarray-based studies performed in cutaneous melanoma and summarize our current understanding of the genetics and biology of melanoma progression derived from accumulating genomic information.  相似文献   

7.
The prognostic impact of BRAF-V600 tumor mutations in stage I/II melanoma patients has not yet been analyzed in detail. We investigated primary tumors of 437 patients diagnosed between 1989 and 2006 by Sanger sequencing. Mutations were detected in 38.7% of patients and were associated with age, histological subtype as well as mitotic rate. The mutational rate was 36.7% in patients with disease-free course and 51.7% in those with subsequent distant metastasis (p = 0.031). No difference in overall survival (p = 0.119) but a trend for worse distant-metastasis-free survival (p = 0.061) was observed in BRAF mutant compared to BRAF wild-type patients. Independent prognostic factors for overall survival were tumor thickness, mitotic rate and ulceration. An interesting significant prognostic impact was observed in patients with tumor thickness of 1 mm or less, with the mutation present in 6 of 7 patients dying from melanoma. In conclusion, no significant survival differences were found according to BRAF-V600 tumor mutations in patients with primary melanoma but an increasing impact of the mutational status was observed in the subgroup of patients with tumor thickness of 1 mm or less. A potential role of the mutational status as a prognostic factor especially in this subgroup needs to be investigated in larger studies.  相似文献   

8.
9.
BACKGROUND: Inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans. All IAPs have at least one baculovirus IAP repeat (BIR) motif that is essential for their anti-apoptotic activity. IAPs physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. This allows them to function as sensors and inhibitors of death signals that emanate from a variety of pathways. RESULTS: Here we report the characterization of ML-IAP, a novel human IAP that contains a single BIR and RING finger motif. ML-IAP is a powerful inhibitor of apoptosis induced by death receptors and chemotherapeutic agents, probably functioning as a direct inhibitor of downstream effector caspases. Modeling studies of the structure of the BIR domain revealed it to closely resemble the fold determined for the BIR2 domain of X-IAP. Deletion and mutational analysis demonstrated that integrity of the BIR domain was required for anti-apoptotic function. Tissue survey analysis showed expression in a number of embryonic tissues and tumor cell lines. In particular, the majority of melanoma cell lines expressed high levels of ML-IAP in contrast to primary melanocytes, which expressed undetectable levels. These melanoma cells were significantly more resistant to drug-induced apoptosis. CONCLUSIONS: ML-IAP, a novel human IAP, inhibits apoptosis induced by death receptors and chemotherapeutic agents. The BIR of ML-IAP possesses an evolutionarily conserved fold that is necessary for anti-apoptotic activity. Elevated expression of ML-IAP renders melanoma cells resistant to apoptotic stimuli and thereby potentially contributes to the pathogenesis of this malignancy.  相似文献   

10.
Han MJ  Wang H  Beer LA  Tang HY  Herlyn M  Speicher DW 《Proteomics》2010,10(24):4450-4462
Melanoma is an excellent model to study molecular mechanisms of tumor progression because melanoma usually develops through a series of architecturally and phenotypically distinct stages that are progressively more aggressive, culminating in highly metastatic cells. In this study, we used an in-depth, 3-D protein level, comparative proteome analysis of two genetically, very closely related melanoma cell lines with low- and high-metastatic potentials to identify proteins and key pathways involved in tumor progression. This proteome comparison utilized fluorescent tagging of cell lysates followed by microscale solution IEF prefractionation and subsequent analysis of each fraction on narrow-range 2-D gels. LC-MS/MS analysis of gel spots exhibiting significant abundance changes identified 110 unique proteins. The majority of observed abundance changes closely correlate with biological processes central to cancer progression, such as cell death and growth and tumorigenesis. In addition, the vast majority of protein changes mapped to six cellular networks, which included known oncogenes (JNK, c-myc, and N-myc) and tumor suppressor genes (p53 and transforming growth factor-β) as critical components. These six networks showed substantial connectivity, and most of the major biological functions associated with these pathways are involved in tumor progression. These results provide novel insights into cellular pathways implicated in melanoma metastasis.  相似文献   

11.
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy.  相似文献   

12.
13.
Our group has previously reported that the majority of human melanomas (> 60%) express the metabotropic glutamate receptor 1 (GRM1) and that the glutamate release inhibitor riluzole, a drug currently used to treat amyotrophic lateral sclerosis, can induce apoptosis in GRM1-expressing melanoma cells. Our group previously reported that in vitro riluzole treatment reduces cell growth in three-dimensional (3D) soft agar colony assays by 80% in cells with wildtype phosphoinositide 3-kinase (PI3K) pathway activation. However, melanoma cell lines harboring constitutive activating mutations of the PI3K pathway (PTEN and NRAS mutations) showed only a 35% to 40% decrease in colony formation in soft agar in the presence of riluzole. In this study, we have continued our preclinical studies of riluzole and its effect on melanoma cells alone and in combination with inhibitors of the PI3 kinase pathway: the AKT inhibitor, API-2, and the mammalian target of rapamycin (mTOR) inhibitor, rapamycin. We modeled these combinatorial therapies on various melanoma cell lines in 3D and 2D systems and in vivo. Riluzole combined with mTOR inhibition is more effective at halting melanoma anchorage-independent growth and xenograft tumor progression than either agent alone. PI3K signaling changes associated with this combinatorial treatment shows that 3D (nanoculture) modeling of cell signaling more closely resembles in vivo signaling than monolayer models. Riluzole combined with mTOR inhibition is effective at halting tumor cell progression independent of BRAF mutational status. This makes this combinatorial therapy a potentially viable alternative for metastatic melanoma patients who are BRAF WT and are therefore ineligible for vemurafenib therapy.  相似文献   

14.
While metastasis is the primary cause of colorectal cancer (CRC) mortality, the molecular mechanisms underpinning it remains elusive. Metastasis is propagated through driver oncogene/suppressor gene mutations, accompanied by passenger mutations and underlying genomic instability. To understand cancer biology, a unifying framework called the “hallmarks of cancer” (HoCs) has been developed, which organizes cell biological alterations under ten key hallmarks. Underlying these HoCs, genome instability generates mutational diversity that is amplified by inflammation. Recognizing how critical cancer cell‐surface proteins influence, these HoCs have been proposed to accelerate precision medicine therapeutic development. A moderate decrease (43%↓) in HCT116 cell surface urokinase plasminogen activator receptor (uPAR) expression mitigates against many HoCs driven by these cell's KRAS and PIK3CA mutational signature. Comprehensive proteomics (whole cell lysis with two membrane protein enrichments) coupled with ingenuity pathway analysis (IPA) demonstrates that uPAR negates essential pathways across the HoC spectrum, particularly those associated with metastasis, resisting cell death, and sustaining proliferation, and parallels Cancer Hallmarks Analytics Tool analysis. Decreasing uPAR predominantly alters metastasis‐related and uPAR‐interactome protein expression (e.g., EGFR, caveolin, vitronectin, integrin β4). Collectively, it is demonstrated that uPAR is a lynchpin protein capable of regulating several HoC pathways in a classical CRC mutational background.  相似文献   

15.
In melanoma, the RAS/RAF/MEK/ERK signalling pathway is an area of great interest, because it regulates tumor cell proliferation and survival. A varying mutation rate has been reported for B-RAF and N-RAS, which has been largely attributed to the differential source of tumor DNA analyzed, e.g., fixed tumor tissues or in vitro propagated melanoma cells. Notably, this variation also interfered with interpreting the impact of these mutations on the clinical course of the disease. Consequently, we investigated the mutational profile of B-RAF and N-RAS in biopsies and corresponding cell lines from metastatic tumor lesions of 109 melanoma patients (AJCC stage III/IV), and its respective impact on survival. 97 tissue biopsies and 105 biopsy-derived cell lines were screened for B-RAF and N-RAS mutations by PCR single strand conformation polymorphism and DNA sequencing. Mutations were correlated with patient survival data obtained within a median follow-up time of 31 months. B-RAF mutations were detected in 55% tissues and 51% cell lines, N-RAS mutations in 23% tissues and 25% cell lines, respectively. There was strong concordance between the mutational status of tissues and corresponding cell lines, showing a differing status for B-RAF in only 5% and N-RAS in only 6%, respectively. Patients with tumors carrying mutated B-RAF showed an impaired median survival (8.0 versus 11.8 months, p = 0.055, tissues; 7.1 versus 9.3 months, p = 0.068, cell lines), whereas patients with N-RAS-mutated tumors presented with a favorable prognosis (median survival 12.5 versus 7.9 months, p = 0.084, tissues; 15.4 versus 6.8 months, p = 0.0008, cell lines), each in comparison with wildtype gene status. Multivariate analysis qualified N-RAS (p = 0.006) but not B-RAF mutation status as an independent prognostic factor of overall survival. Our findings demonstrate that B-RAF and N-RAS mutations are well preserved during short term in vitro propagation and, most importantly, differentially impact the outcome of melanoma patients.  相似文献   

16.

Background

Sorafenib monotherapy in patients with metastatic melanoma was explored in this multi-institutional phase II study. In correlative studies the impact of sorafenib on cyclin D1 and Ki67 was assessed.

Methodology/Principal Findings

Thirty-six patients treatment-naïve advanced melanoma patients received sorafenib 400 mg p.o. twice daily continuously. Tumor BRAFV600E mutational status was determined by routine DNA sequencing and mutation-specific PCR (MSPCR). Immunohistochemistry (IHC) staining for cyclin D1 and Ki67 was performed on available pre- and post treatment tumor samples. The main toxicities included diarrhea, alopecia, rash, mucositis, nausea, hand-foot syndrome, and intestinal perforation. One patient had a RECIST partial response (PR) lasting 175 days. Three patients experienced stable disease (SD) with a mean duration of 37 weeks. Routine BRAFV600E sequencing yielded 27 wild-type (wt) and 6 mutant tumors, whereas MSPCR identified 12 wt and 18 mutant tumors. No correlation was seen between BRAFV600E mutational status and clinical activity. No significant changes in expression of cyclin D1 or Ki67 with sorafenib treatment were demonstrable in the 15 patients with pre-and post-treatment tumor samples.

Conclusions/Significance

Sorafenib monotherapy has limited activity in advanced melanoma patients. BRAFV600E mutational status of the tumor was not associated with clinical activity and no significant effect of sorafenib on cyclin D1 or Ki67 was seen, suggesting that sorafenib is not an effective BRAF inhibitor or that additional signaling pathways are equally important in the patients who benefit from sorafenib.

Trial registration

Clinical Trials.gov NCT00119249  相似文献   

17.
黑色素瘤是一种高侵袭性的恶性皮肤肿瘤,转移率高、预后差。研究黑素瘤细胞生物学特性对黑素瘤的治疗和控制具有重要的意义。本研究以C57BL/6J小鼠的正常黑色素细胞及B16黑色素瘤细胞为研究对象,采用二代测序技术分析两种细胞间的转录组表达差异,筛选差异基因,为后续黑色素瘤的形成机制研究提供理论依据。采用差异倍数及错误率分析测序数据,鉴定出1 436个新的mRNA和4 086个差异表达的已知mRNA。GO数据库和KEGG数据库分析显示,差异表达的mRNAs参与了149个调控途径, 主要集中在疾病调控、细胞周期调节和环境信息调控方面。qRT-PCR及Western印迹检测发现,调节细胞增殖、迁移的Pdgf-B、Integrin-β1和Integrin-β5以及调节黑色素颗粒增加的Mitf、Tyr、Tyrp1和Tyrp2在B16细胞中的表达量显著高于在正常黑色素细胞中的表达。本研究获得的差异基因为后续黑色素瘤的研究提供了新的候选基因。  相似文献   

18.
MicroRNAs (miRNAs) have been validated as critical regulators in the development of melanoma. miR-140 was abnormally downregulated in uveal melanoma samples. However, the expression level and roles of miR-140-5p remain unclear in melanoma for now. We speculate that miR-140-5p is abnormally expressed and may play an important role in melanoma. The expressions of miR-140-5p and SOX4 messenger RNA were determined by quantitative real-time polymerase chain reaction assays. Western blot assays were employed to detect the expression levels of SOX4, Ki67, MMP-2, MMP-7, p-β-catenin, c-Myc, cyclin D1, p65, and IκBα. Luciferase reporter assays were employed to elucidate the interaction between SOX4 and miR-140-5p. MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide) and transwell invasion assays were applied to evaluate capabilities of cell proliferation and invasion, respectively. Xenograft models of melanoma were established to verify the role and molecular basis of miR-140-5p. Immunohistochemical (IHC) assays were employed to measure the Ki67 and SOX4 at the protein level in xenografted melanoma tissues. Herein, these observations showed that, miR-140-5p was abnormally downregulated in melanoma tissues and cells, while SOX4 was upregulated. miR-140-5p directly targeted SOX4 and inhibited its expression in melanoma cells. miR-140-5p overexpression repressed melanoma cell proliferation and invasion and its effects were partially restored SOX4 overexpression. Moreover, miR-140-5p hindered melanoma growth in vivo by downregulating SOX4. Mechanistically, miR-140-5p suppressed activation of the Wnt/β-catenin and NF-κB pathways by targeting SOX4. Our study concluded that miR-140-5p hindered cell proliferation, invasion, and tumorigenesis by targeting SOX4 via inactivation of the Wnt/β-catenin and NF-κB signaling pathways in malignant melanoma, which provides an underlying molecular mechanism for the treatment for melanoma with miRNAs.  相似文献   

19.

Background

Dasatinib (Sprycel) was developed as a tyrosine kinase inhibitor targeting Bcr-Abl and the family of Src kinases. Dasatinib is commonly used for the treatment of acute lymphoblastic and chronic myelogenous leukemia. Previous clinical studies in melanoma returned inconclusive results and suggested that patients respond highly heterogeneously to dasatinib as single agent or in combination with standard-of-care chemotherapeutic dacarbazine. Reliable biomarkers to predict dasatinib responsiveness in melanoma have not yet been developed.

Results

Here, we collected comprehensive in vitro data from experimentally well-controlled conditions to study the effect of dasatinib, alone and in combination with dacarbazine, on cell proliferation and cell survival. Sixteen treatment conditions, covering therapeutically relevant concentrations ranges of both drugs, were tested in 12 melanoma cell lines with diverse mutational backgrounds. Melanoma cell lines responded heterogeneously and, importantly, dasatinib and dacarbazine did not synergize in suppressing proliferation or inducing cell death. Since dasatinib is a promiscuous kinase inhibitor, possibly affecting multiple disease-relevant pathways, we also determined if basal phospho-protein amounts and treatment-induced changes in phospho-protein levels are indicative of dasatinib responsiveness. We found that treatment-induced de-phosphorylation of p53 correlates with dasatinib responsiveness in malignant melanoma.

Conclusions

Loss of p53 phosphorylation might be an interesting candidate for a kinetic marker of dasatinib responsiveness in melanoma, pending more comprehensive validation in future studies.
  相似文献   

20.
Malignant conversion of BRAF‐ or NRAS‐mutated melanocytes into melanoma cells can be promoted by PI3′‐lipid signaling. However, the mechanism by which PI3′‐lipid signaling cooperates with mutationally activated BRAF or NRAS has not been adequately explored. Using human NRAS‐ or BRAF‐mutated melanoma cells that co‐express mutationally activated PIK3CA, we explored the contribution of PI3′‐lipid signaling to cell proliferation. Despite mutational activation of PIK3CA, melanoma cells were more sensitive to the biochemical and antiproliferative effects of broader spectrum PI3K inhibitors than to an α‐selective PI3K inhibitor. Combined pharmacological inhibition of MEK1/2 and PI3K signaling elicited more potent antiproliferative effects and greater inhibition of the cell division cycle compared to single‐agent inhibition of either pathway alone. Analysis of signaling downstream of MEK1/2 or PI3K revealed that these pathways cooperate to regulate cell proliferation through mTORC1‐mediated effects on ribosomal protein S6 and 4E‐BP1 phosphorylation in an AKT‐dependent manner. Although PI3K inhibition resulted in cytostatic effects on xenografted NRASQ61H/PIK3CAH1047R melanoma, combined inhibition of MEK1/2 plus PI3K elicited significant melanoma regression. This study provides insights as to how mutationally activated PIK3CA acts in concert with MEK1/2 signaling to cooperatively regulate mTORC1/2 to sustain PIK3CA‐mutated melanoma proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号