首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The CO2 compensation concentrations (points) of leaves of the submerged vascular aquatic plant Myriophyllum spicatum L. were determined in a closed aqueous system at pH 7.0 by a gas chromatographic technique and over the range 10–30deg;C were found to range from 36 to 46 cm3m?3 in medium equilibrated with 21% O2 (0.03 kgm?3), and 25 to 35 cm3m?3 in medium equilibrated with 2% O2 (0.03 kgm?3). The rates of true (TPS) and apparent (APS) photosynthesis of leaves were measured in medium equilibrated with 21% O2 and buffered at pH 7.0, at subsaturating concentrations (12.8–18.8 mmol m?3) of dissolved inorganic carbor. (DIC) containing H14CO3, by determining the initial rates of uptake by the leaves of DIC and 14C-activity from the medium. The rate of photorespiration, the difference between TPS and APS, was 7.0–13.3% of TPS over the range of 10–25°C and rose to 29% of TPS at 35°C. The magnitude of the compensation point of this plant is therefore similar to, but is much less O2-sensitive than, those of C3 plants, and the photorespiratory rate, at DIC concentrations near the CO2 compensation point, is very low compared to that of C3 plants.  相似文献   

2.
Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open‐top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses.  相似文献   

3.
    
Stable isotope analysis has become an important tool in ecology over the last 25 years. A wealth of ecological information is stored in animal tissues in the relative abundances of the stable isotopes of several elements, particularly carbon and nitrogen, because these isotopes navigate through ecological processes in predictable ways. Stable carbon and nitrogen isotopes have been measured in most primate taxonomic groups and have yielded information about dietary content, dietary variability, and habitat use. Stable isotopes have recently proven useful for addressing more fine‐grained questions about niche dynamics and anthropogenic effects on feeding ecology. Here, we discuss stable carbon and nitrogen isotope systematics and critically review the published stable carbon and nitrogen isotope data for modern primates with a focus on the problems and prospects for future stable isotope applications in primatology. Am. J. Primatol. 74:969‐989, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

4.
Abstract The CO2 compensation point of Ulva lactuca frond sections has been measured in artificial seawater using a sensitive gas-chromatographic method. Under nitrogen the compensation point remained relatively constant at 3–6 cm3 m−3 at temperatures from 10 to 30°C while in air-saturated medium (0.3 kg m−3 O2) the compensation point rose from 5 cm3 m−3 at 10°C to 11 cm3 m−3 at 30°C. These responses of the compensation point to temperature and oxygen concentration indicate that there is little photorespiratory CO2 loss in this marine macroalga, and the low values of these compensation points indicate that inorganic carbon is actively accumulated by the plant.  相似文献   

5.
Following a series of continuous exposures to 14CO2 for different lengths of time, leaves from Neurachne munroi (C4), N. minor (C3-C4) and N. tenuifolia (C3| were estimated to assimilate 100%, 9% and 2–4%, respectively, of atmospheric CO2 by the C4 pathway. The percentage of 14C-label appearing in malate and aspartate in leaves of N. minor progressively increased with longer exposure times indicating that a significant proportion of its C4 acids are formed as secondary products. In 14CO2/12CO2 pulse/chase experiments, the 14C-label in leaves of N. munroi was rapidly transferred from C4 acids to sugar monophosphates plus sugar diphosphates, and finally to sucrose. In leaves of N. minor, the 14C-label was slowly metabolized from the C-4 carboxyl of malate and asparate (apparent half-time = 250 s), and the formation of C4 acids as secondary products was again evident. 14C-label in serine/glycine accumulated to comparable magnitudes in both N. minor and in N. tenuifolia, but there was an initial lag phase in the accumulation of label in N. minor. C4 photosynthesis is apparently of minimal importance in reducing photorespiration in N. minor, but leaf anatomical specializations and a possible compartmentation of photorespiratory metabolism may be of considerable importance.  相似文献   

6.
    
Understanding the ecological patterns of invasive species and their habitats require an understanding of the species’ foraging ecology. Stable carbon (δ13C) and nitrogen (δ15N) isotope values provide useful information into the study of animal ecology and evolution, since the isotope ratios of consumers reflect consumer's dietary patterns. Nevertheless, the lack of species‐ and element‐specific laboratory‐derived turnover rates could limit their application. Using a laboratory‐based dual stable isotope tracer approach (Na15NO3 and NaH13CO3), we evaluated the δ15N and δ13C isotope turnover rates in full‐grown adult invasive Limnomysis benedeni from Lake Constance. We provide δ15N and δ13C turnover rates based on nonlinear least‐squares regression and posterior linear regression models. Model precisions and fit were evaluated using Akaike's information criterion. Within a couple of days, the δ15N and δ13C of mysids began to change. Nevertheless, after about 14 days, L. benedeni did not reach equilibrium with their new isotope values. Since the experiment was conducted on adult subjects, it is evident that turnover was mainly influenced by metabolism (in contrast to growth). Unlike traditional dietary shifts, our laboratory‐based dual stable isotope tracer approach does not shift the experimental organisms into a new diet and avoids dietary effects on isotope values. Results confirm the application of isotopic tracers to label mysid subpopulations and could be used to reflect assimilation and turnover from the labeled dietary sources. Field‐based stable isotope studies often use isotopic mixing models commonly assuming diet‐tissue steady state. Unfortunately, in cases where the isotopic composition of the animal is not in equilibrium with its diet, this can lead to highly misleading conclusions. Thus, our laboratory‐based isotopic incorporation rates assist interpretation of the isotopic values from the field and provide a foundation for future research into using isotopic tracers to investigate invasion ecology.  相似文献   

7.
Reproductive allocation strategies have been historically described as lying on a continuum between capital and income breeding. Capital breeders have been defined as species that allocate stored reserves to reproduction, whereas income breeders have been defined as species that allocate relatively recently‐ingested food resources to reproduction. Snakes are considered capital breeders because they efficiently store large amounts of nutrients and energy, potentially enough to support an entire reproductive bout without feeding. We examined the abilities of five viviparous snake species to allocate income to follicles during vitellogenesis. We fed 15N‐labelled L‐leucine to experimental females of each species during vitellogenesis, whereas control females were fed unlabelled meals. After ovulation, we measured yolk 15N p.p.m. using mass spectrometry. Maternal scale samples taken before labelling were used to estimate endogenous 15N concentrations, which should represent ‘capital’. Scale samples taken at ovulation were used to determine whether snakes assimilated 15N‐labelled‐leucine from labelled diets. Yolks and post‐ovulatory scales of labelled females were significantly more enriched in 15N than those of unlabelled females in all species, indicating significant assimilation and allocation of income‐derived amino acids to the yolk during vitellogenesis. The lack of among‐species differences suggests that all species allocated income amino acids to vitellogenesis. The results obtained in the present study suggest that proportional utilization of income or capital depends on the frequency and timing of foraging success during reproductive events. Therefore, capital and income breeding may be consequences of both life‐history and environmental constraints on foraging success, rather than strategies of reproductive allocation. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 390–404.  相似文献   

8.
C4 plants contribute ≈ 20% of global gross primary productivity, and uncertainties regarding their responses to rising atmospheric CO2 concentrations may limit predictions of future global change impacts on C4-dominated ecosystems. These uncertainties have not yet been considered rigorously due to expectations of C4 low responsiveness based on photosynthetic theory and early experiments. We carried out a literature review (1980–97) and meta-analysis in order to identify emerging patterns of C4 grass responses to elevated CO2, as compared with those of C3 grasses. The focus was on nondomesticated Poaceae alone, to the exclusion of C4 dicotyledonous and C4 crop species. This provides a clear test, controlled for genotypic variability at family level, of differences between the CO2-responsiveness of these functional types. Eleven responses were considered, ranging from physiological behaviour at the leaf level to carbon allocation patterns at the whole plant level. Results were also assessed in the context of environmental stress conditions (light, temperature, water and nutrient stress), and experimental growing conditions (pot size, experimental duration and fumigation method). Both C4 and C3 species increased total biomass significantly in elevated CO2, by 33% and 44%, respectively. Differing tendencies between types in shoot structural response were revealed: C3 species showed a greater increase in tillering, whereas C4 species showed a greater increase in leaf area in elevated CO2. At the leaf level, significant stomatal closure and increased leaf water use efficiency were confirmed in both types, and higher carbon assimilation rates were found in both C3 and C4 species (33% and 25%, respectively). Environmental stress did not alter the C4 CO2-response, except for the loss of a significant positive CO2-response for above-ground biomass and leaf area under water stress. In C3 species, stimulation of carbon assimilation rate was reduced by stress (overall), and nutrient stress tended to reduce the mean biomass response to elevated CO2. Leaf carbohydrate status increased and leaf nitrogen concentration decreased significantly in elevated CO2 only in C3 species. We conclude that the relative responses of the C4 and C3 photosynthetic types to elevated CO2 concur only to some extent with expectations based on photosynthetic theory. The significant positive responses of C4 grass species at both the leaf and the whole plant level demand a re-evaluation of the assumption of low responsiveness in C4 plants at both levels, and not only with regard to water relations. The combined shoot structural and water use efficiency responses of these functional types will have consequential implications for the water balance of important catchments and range-lands throughout the world, especially in semiarid subtropical and temperate regions. It may be premature to predict that C4 grass species will lose their competitive advantage over C3 grass species in elevated CO2.  相似文献   

9.
Chlamydomonas reinhardtii Dangerad 11–32(90) (−), which exhibits C3 properties, and Anacystis nidulans (Strain no. UTEX 625), which exhibits C4 properties, were used to study the effects of triacontanol on growth, photosynthesis and photorespiration. Photosynthetic rate was measured as CO2 uptake and the O2 inhibition of photosynthesis was used as a measure of photorespiration. Triacontanol dissolved in chloroform and dispersed in Tween-20 and triacontanol colloidally dispersed in an aqueous solution of sodium tallow alkyl sulfate were tested. Chlamydomonas cultures increased significantly in cell number after 4 days, and in chlorophyll content after 3 days of treatment with 2.3 × 10−8 M TRIA in chloroform/Tween-20. In cultures of Anacystis the chlorophyll content became significantly higher 3 days after treatment with 2.3 × 10−9 M TRIA and the cell number was noticeably higher than the controls.
CO2 uptake by triacontanol-treated Chlamydomonas cultures was about the same in both 2 and 21% O2, and the O2 inhibition was significantly reduced as compared with the controls. Photosynthesis in Anacystis was O2-insensitive under the experimental condition used. When Anacystis was treated with triacontanol there was no change in the rate of CO2 uptake and no change in the O2 sensitivity of its CO2 uptake. It appears that triacontanol affects some process which regulated the balance between photosynthesis and photorespiration, but other processes which result in increased growth are probably also affected.  相似文献   

10.
Growth at elevated CO2: photosynthetic responses mediated through Rubisco   总被引:5,自引:12,他引:5  
Abstract. The global uptake of CO2 in photosynthesis is about 120 gigatons (Gt) of carbon per year. Virtually all passes through one enzyme, ribulose bisphosphate carboxylase/oxygenase (rubisco), which initiates both the photosynthetic carbon reduction, and photorespiratory carbon oxidation, cycles. Both CO2 and O2 are substrates; CO2 also activates the enzyme. In C3 plants, rubisco has a low catalytic activity, operates below its Km (CO2), and is inhibited by O2. Consequently, increases in the CO2/O2 ratio stimulate C3 photosynthesis and inhibit photorespiration. CO2 enrichment usually enhances the productivity of C3 plants, but the effect is marginal in C4 species. It also causes acclimation in various ways: anatomically, morphologically, physiologically or biochemically. So, CO2 exerts secondary effects in growth regulation, probably at the molecular level, that are not predictable from its primary biochemical role in carboxylation. After an initial increase with CO2 enrichment, net photosynthesis often declines. This is a common acclimation phenomenon, less so in field studies, that is ultimately mediated by a decline in rubisco activity, though the RuBP/Pi-regeneration capacities of the plant may play a role. The decline is due to decreased rubisco protein, activation state, and/or specific activity, and it maintains the rubisco fixation and RuBP/Pi regeneration capacities in balance. Carbohydrate accumulation is sometimes associated with reduced net photosynthesis, possibly causing feedback inhibition of the RuBP/Piregeneration capacities, or chloroplast disruption. As exemplified by field-grown soybeans and salt marsh species, a reduction in net photosynthesis and rubisco activity is not inevitable under CO2 enrichment. Strong sinks or rapid translocation may avoid such acclimation responses. Over geological time, aquatic autotrophs and terrestrial C4 and CAM plants have genetically adapted to a decline in the external CO2/O2 ratio, by the development of mechanisms to concentrate CO2 internally; thus circumventing O2 inhibition of rubisco. Here rubisco affinity for CO2 is less, but its catalytic activity is greater, a situation compatible with a high-CO2 internal environment. In aquatic autotrophs, the CO2 concentrating mechanisms acclimate to the external CO2, being suppressed at high-CO2. It is unclear, whether a doubling in atmospheric CO2 will be sufficient to cause a de-adaptive trend in the rubisco kinetics of future C3 plants, producing higher catalytic activities.  相似文献   

11.
    
Aim We sought to quantify geographical variation in the stable isotope values of mouse lemurs (Microcebus) and to determine whether this variation reflects trophic differences among populations or baseline isotopic differences among habitats. If the latter pattern is demonstrated, then Microcebus can become a proxy for tracking baseline habitat isotopic variability. Establishing such a baseline is crucial for identifying niche partitioning in modern and ancient communities. Location We studied five species of Microcebus from eight distinct habitats across Madagascar. Methods We compared isotopic variation in C3 plants and Microcebus fur within and among localities. We predicted that carbon and nitrogen isotope values of Microcebus should: (1) vary as a function of abiotic variables such as rainfall and temperature, and (2) covary with isotopic values in plants. We checked for trophic differences among Microcebus populations by comparing the average difference between mouse lemur and plant isotope values for each locality. We then used multiple regression models to explain spatial isotope variation in mouse lemurs, testing a suite of explanatory abiotic variables. Results We found substantial isotopic variation geographically. Ranges for mean isotope values were similar for both Microcebus and plants across localities (carbon 3.5–4.0‰; nitrogen 10.5–11.0‰). Mean mouse lemur and plant isotope values were lowest in cool, moist localities and highest in hot, dry localities. Rainfall explained 58% of the variation in Microcebus carbon isotope values, and mean plant nitrogen isotope values explained 99.7% of the variation in Microcebus nitrogen isotope values. Average differences between mouse lemur and plant isotope values (carbon 5.0‰; nitrogen 5.9‰) were similar across localities. Main conclusions Isotopic data suggest that trophic differences among Microcebus populations were small. Carbon isotope values in mouse lemurs were negatively correlated with rainfall. Nitrogen isotope values in Microcebus and plants covaried. Such findings suggest that nitrogen isotope values for Microcebus are a particularly good proxy for tracking baseline isotopic differences among habitats. Our results will facilitate future comparative research on modern mouse lemur communities, and ecological interpretations of extinct Holocene communities.  相似文献   

12.
Abstract Ultrastructural and physiological characteristics of the C3-C4 intermediate Neurachne minor S. T. Blake (Poaceae) are compared with those of C3 and C4 relatives, and C3-C4Panicum milioides Nees ex Trin. N. minor consistently exhibits very low CO2 compensation points (τ: 1.0, usually 0.3–0.6 Pa) yet has C3-like δ13C values. CO2 assimilation rates (A) respond like those of C3 plants to a decrease in O2 partial pressure (2 × 104–1.9 × 103 Pa) at ambient CO2 levels, but this response is progressively attenuated until negligible at very low CO2. By contrast, other species of the Neurachneae are clearly either C4 (two spp.) or C3 (seven spp.). For plants grown and measured at different photon flux densities (PFDs), τ for N. minor and P. milioides increases from 0.5 to 1.0, and from 1.0 to 2.1 Pa, respectively, as PFD is decreased from 1860 to 460 μmol m?2s?1. In N. minor, the O2 response of τ is either biphasic as in P. milioides, but much diminished and with a higher transition point, or is very C4-like. As in C4 relatives, inner sheath cells contain numerous chloroplasts. Their walls possess a suberized lamella, which may make them more CO2-tight than bundle sheath cells of P. milioides, contributing to the almost C4-like τ characteristics of N. minor. The biochemical basis of C3-C4 intermediacy is considered.  相似文献   

13.
Protoplast fusion between Brassica oleracea and Moricandia nitens, a C3–C4 intermediate wild species, was carried out. Four hundred and twenty five plants were regenerated from 1995 calli. More than 90% of the regenerated plants were verified as true intergeneric hybrids on the basis of morphological observation and molecular-marker analysis. The hybrids were morphologically intermediate between both fusion parents. Variations in flower color and petal number were also observed. The chromosome number and pollen fertility varied across the individual hybrids. Although after self-pollination pollen germinated on the stigma and pollen tubes were visible in the style, the pods did not develop properly without in vitro culture. Measurements of the CO2 compensation point revealed that six out of eight hybrid plants expressed a gas-exchange character that was intermediate between the C3–C4 M. nitens and C3 B. oleracea parents. Received: 20 January 1999 / Accepted: 16 June 1999  相似文献   

14.
Plants may be more sensitive to carbon dioxide (CO2) enrichment at subambient concentrations than at superambient concentrations, but field tests are lacking. We measured soil‐water content and determined xylem pressure potentials and δ13C values of leaves of abundant species in a C3/C4 grassland exposed during 1997–1999 to a continuous gradient in atmospheric CO2 spanning subambient through superambient concentrations (200–560 µmol mol2?1). We predicted that CO2 enrichment would lessen soil‐water depletion and increase xylem potentials more over subambient concentrations than over superambient concentrations. Because water‐use efficiency of C3 species (net assimilation/leaf conductance; A/g) typically increases as soils dry, we hypothesized that improvements in plant‐water relations at higher CO2 would lessen positive effects of CO2 enrichment on A/g. Depletion of soil water to 1.35 m depth was greater at low CO2 concentrations than at higher CO2 concentrations during a mid‐season drought in 1998 and during late‐season droughts in 1997 and 1999. During droughts each year, mid‐day xylem potentials of the dominant C4 perennial grass (Bothriochloa ischaemum (L.) Keng) and the dominant C3 perennial forb (Solanum dimidiatum Raf.) became less negative as CO2 increased from subambient to superambient concentrations. Leaf A/g—derived from leaf δ13C values—was insensitive to feedbacks from CO2 effects on soil water and plant water. Among most C3 species sampled—including annual grasses, perennial grasses and perennial forbs—A/g increased linearly with CO2 across subambient concentrations. Leaf and air δ13C values were too unstable at superambient CO2 concentrations to reliably determine A/g. Significant changes in soil‐ and plant‐water relations over subambient to superambient concentrations and in leaf A/g over subambient concentrations generally were not greater over low CO2 than over higher CO2. The continuous response of these variables to CO2 suggests that atmospheric change has already improved water relations of grassland species and that periodically water‐limited grasslands will remain sensitive to CO2 enrichment.  相似文献   

15.
    
The CO2 concentration at the site of carboxylation inside the chloroplast stroma depends not only on the stomatal conductance, but also on the conductance of CO2 between substomatal cavities and the site of CO2 fixation. This conductance, commonly termed mesophyll conductance (gm), significantly constrains the rate of photosynthesis. Here we show that estimates of gm are influenced by the amount of respiratory and photorespiratory CO2 from the mitochondria diffusing towards the chloroplasts. This results in an apparent CO2 and oxygen sensitivity of gm that does not imply a change in intrinsic diffusion properties of the mesophyll, but depends on the ratio of mitochondrial CO2 release to chloroplast CO2 uptake. We show that this effect (1) can bias the estimation of the CO2 photocompensation point and non‐photorespiratory respiration in the light; (2) can affect the estimates of ribulose 1·5‐bisphosphate carboxylase/oxygenase (Rubisco) kinetic constants in vivo; and (3) results in an apparent obligatory correlation between stomatal conductance and gm. We further show that the amount of photo(respiratory) CO2 that is refixed by Rubisco can be directly estimated through measurements of gm.  相似文献   

16.
    
The dependence of the carbon concentrating mechanism of Palmaria palmata (L.) Kuntze on the growth light level was examined 1) to determine whether or not there is a threshold photon flux density (PFD) at which the inorganic carbon uptake mechanism can operate and 2) to attempt to quantify the relative energetic costs of acclimation to the two different limiting factors, PFD and dissolved inorganic carbon (DIC) concentration. Plants were grown at six PFDs: 5, 25, 50, 75, 95, and 125 μmol photons. m?2.s?1. Growth rates increased with increasing PFD from 5 to 50 μmol photons. m?2. s?1 and were light-saturated at 75, 95, and 125 μmol photons. m?2. s?1 Values of δ13C increased continuously with increasing growth PFD and did not saturate over the range of light levels tested. Time-resolved fluorescence characteristics indicated a progressive photoacclimation below 50 μmol photons. m?2. s?1. Analysis of chlorophyll fluorescence induction showed three levels of light use efficirncy associated with growth at 5 or 25, 50, and >75 μmol photons. m?2. s?1. The light-haruesting efficiency was inversely proportional to the effectiveness of DIC acquisition in plants grown at the six PFDs. These data were interpreted to indicate that there is a physiological tradeoff between photosynthetic efficiency and bicarbonate use in this species.  相似文献   

17.
    
We used the stable isotope 13C to distinguish between food web components that depended on warm season grasses with the C4 photosynthetic pathway and those that depended on plants with the C3 pathway. The study site was contaminated by heavy metals from a zinc smelter that operated near Palmerton, Pennsylvania, U.S.A. C3 plants only contributed 1.16% of aboveground primary productivity, whereas recently seeded (5–7 year old) warm season C4 grasses contributed the remaining 98.84%. Analyses of tissue samples revealed that the carbon content of invertebrates and vertebrates did not reflect the composition of the vegetation. Of 135 samples, 48 (36%) had greater than 75% of their carbon from C4‐derived sources, while 32 (24%) of the samples had less than 25%. However, carbon from C4 grasses passed through to higher trophic levels, as shown by the abundance of predators with a high proportion of C4‐derived carbon. We document three channels of carbon flux through the food web, one based on warm season grasses, now supporting a functioning ecosystem at all key trophic levels, one based on C3 plants, and a third based on detritus. Theoretical and empirical studies have shown that relative configurations of such channels are important to ecosystem stability. Our results suggest that functional groupings of plants based on photosynthetic pathway or other plant traits likely form the basis for food web compartments. By using diverse functional groups of plants for reclamation or restoration, practitioners may be able to aid the development of channels and thereby promote desired ecosystem states.  相似文献   

18.
    
Progress in the study of stable isotope discrimination in carbon assimilation by aquatic macrophytes has been slower than for other groups of primary producers, such as phytoplankton and terrestrial plants. A probable reason has been the methodologies employed for such a study: field collections or long‐term incubations, both relying on the observation of changes in carbon isotope composition of plant tissue. Here, we present a short‐term incubation method based on the change in carbon stable isotope composition in water. Its fundamental advantage over the other approaches is that the change in stable isotope composition in water in a closed system is much faster than in the plant tissue. We applied the method to investigate the relationship between carbon assimilation intensity and isotope discrimination. The results included a relatively small discrimination in respiration, a significant influence of carbon assimilation rate on discrimination, and the suggestion of HCO3? or CO2 uptake in photosynthesis. The information gathered using this method would be difficult to obtain in other ways, and so we believe that it should contribute to a better understanding of the physiology and ecology of aquatic macrophytes.  相似文献   

19.
    
Carbon and oxygen isotopic data are reported from 116 Pleistocene Equus teeth from sixty-six localities in the New World ranging from 68°N (Alaska, Canada) to 35°S (Argentina). Equus species have been predominantly grazers, and as such, carbon isotopic values of their tooth enamel provide evidence of the Pleistocene distribution of C3 and C4 grasses. The carbon data presented here indicate a gradient (δ13C range of 10 parts/mil) in the relative proportion of C3 and C4 grasses between high latitude and equatorial Equus samples. The largest amount of change from C3 to C4 grasses during the Pleistocene occurred in the mid-latitudes between about 30 to 40°. The oxygen data, which vary proportionately with temperature, indicate a latitudinal gradient (δ18O range of 20 parts/mil) between high-latitude and equatorial Equus samples. The basic pattern of latitudinal gradients of C3/C4 grass distribution and temperature as interpreted from these Pleistocene data is similar to the modern-day. The use of stable isotopes of fossil herbivore teeth represents a new means to interpret Pleistocene climates and terrestrial ecology.  相似文献   

20.
    
Akagi S  Sato K  Ohmori S 《Amino acids》2004,26(3):235-242
Summary. In general, threonine is metabolized by reaction catalyzed by threonine-3-dehydrogenase (TDH), threonine dehydratase (TH) or threonine aldolase (TA). The activities of these three enzymes were compared in the liver of Japanese quails and rats. The animals were fed a standard or threonine rich-diet, or fasted for 3 days. The specific activity of TDH in the liver from quail fed a standard diet was 11 times higher than that in the liver from rats fed a standard diet. The TDH activities in the livers of the fasting and 5% threonine-rich diet groups of quail were 3 and 2 times higher than those in the livers from quail fed the standard diet, respectively. The TH activity in the liver of rats fed a standard diet was 14 times higher than that in the liver of quail fed a standard diet. The TH activity in the rat liver after fasting was 2.3 times higher than that of the standard diet control. The activity of TA in the livers of rat and quail were so low that its role in threonine metabolism in both animals seemed to be negligible. These results suggest that threonine is a ketogenic amino acid in the quail liver, while it is a glucogenic in the rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号