首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because traits conferring resistance on herbivores can reduce fitness-associated traits, trade-offs may occur between tolerance and resistance responses. We examined these trade-offs in genotypes of Nicotiana attenuata that were transformed to silence trypsin proteinase inhibitor (TPI) production (AS-Natpi), an antiherbivore defense associated with (14%) reductions in seed production, and the jasmonate signal cascade that elicits these defenses (AS-Nalox3), by measuring stalk and axillary branch growth and seed production after two defoliation regimes and Manduca sexta larval attack to bottom or middle and top stalk leaves. Larval attack and defoliation at middle and top leaves depressed seed production and increased axillary branching more than at bottom leaves. AS-Nalox3 and AS-Natpi plants produced significantly longer (two- to fourfold) branches than did wild-type (WT) plants, results that are consistent with resource-based trade-offs between resistance and regrowth. Methyl jasmonate (MeJA) treatment of AS-Nalox3 plants restored WT branch growth, suggesting that jasmonic acid (JA) signalling suppresses regrowth and contributes to apical dominance. These results are consistent with the existence of JA- and resource-mediated trade-offs between regrowth and herbivore resistance traits.  相似文献   

2.
3.
Many studies demonstrate resource-based trade-offs between growth and defence on a large timescale. Yet, the short-term dynamics of this growth reaction are still completely unclear, making it difficult to explain growth-defence trade-offs mechanistically. In this study, image-based non-destructive methods were used to quantify root growth reactions happening within hours following simulated herbivore attack. The induction of wound reactions in Nicotiana attenuata in the seedling stage led to transiently decreased root growth rates. Application of the oral secretion of the specialist herbivore Manduca sexta to the leaves led to a transient decrease in root growth that was more pronounced than if a mere mechanical wounding was imposed. Root growth reduction was more pronounced than leaf growth reduction. When fatty acid-amino acid conjugates (FACs) were applied to wounds, root growth reduction occurred in the same intensity as when oral secretion was applied. Timing of the transient growth reduction coincided with endogenous bursts of jasmonate (JA) and ethylene emissions reported in literature. Simulation of a wound response by applying methyl jasmonate (MeJA) led to more prolonged negative effects on root growth. Increased nicotine concentrations, trichome lengths and densities were observed within 72 h in seedlings that were treated with MeJA or that were mechanically wounded. Overall, these reactions indicate that even in a very early developmental stage, the diversion of plant metabolism from primary (growth-sustaining) to secondary (defence-related) metabolism can cause profound alterations of plant growth performance.  相似文献   

4.
5.
6.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   

7.
8.
Many plants employ induced responses against generalist herbivores. Specialist herbivores, however, may employ several mechanisms to overcome the negative effects of induced plant defenses. Here we test how the behavior and development of specialist Manduca sexta larvae are affected by induced responses in their natural host plant Nicotiana attenuata. On a spatial scale relevant to both the plant and the herbivore, we first determined how methyl jasmonate (MeJA)-induced responses, such as increased nicotine production, affect the tendency of larvae to leave induced plants. When larvae were allowed to move between two plants planted in one pot, they left an MeJA-treated plant faster than a control plant. When both plants in the pot were MeJA-treated, the larvae developed more slowly than when both plants were uninduced, or when the larvae had the opportunity to move to an uninduced neighbor. The sooner larvae moved from an MeJA-treated plant to an untreated neighbor, the larger the body mass they attained. This demonstrates that M. sexta larvae can compensate behaviorally for the deleterious effects of induced plant responses. These effects were observed in plants grown under both low and high N supply rates, though the effects were more pronounced under high N. To examine the consequences of the timing and the direction of the host plant switching behavior for larval development, neonate larvae were fed leaves excised from induced and uninduced plants. Larvae confined to MeJA-treated leaves had higher mortality rates and grew slower than larvae fed only control leaves. This demonstrates that MeJA-induced responses decrease growth and development of specialist herbivores that do not have the behavioral option of moving to an uninduced plant. The sooner the larvae were switched to MeJA-treated leaves, the slower their development compared to larvae fed only uninduced leaves. In contrast, the sooner larvae fed MeJA-treated leaves were switched to control leaves, the faster they developed. Again the effects of MeJA treatment were stronger in plants grown under high N supply. We propose that induced plants growing in close competition with an uninduced conspecific may offset the fitness costs of these induced responses and perhaps obtain a fitness benefit by motivating herbivores to move to their neighboring competitors. Received: 25 March 1999 / Accepted: 8 October 1999  相似文献   

9.
Arabidopsis and tomato plants mutated in the F-box protein COI1 mediating jasmonate (JA) responses are more susceptible to herbivores in laboratory trials, but the exact mechanisms of COI1-mediated resistance are not known. We silenced COI1 by transformation with an inverted repeat construct (ir-coi1) in Nicotiana attenuata, a plant the direct and indirect defenses of which against various herbivores have been well studied. ir-coi1 plants are male sterile and impaired in JA-elicited direct [nicotine, caffeoylputrescine and trypsin proteinase inhibitor (TPI) activity] and indirect (cis-alpha-bergamotene emission) defense responses; responses not elicited by JA treatment (ethylene production and flower TPI activity) were unaffected. Larvae of Manduca sexta, a common herbivore of N. attenuata, gained three times more mass feeding on ir-coi1 than on wild-type (WT) plants in glasshouse experiments. By regularly moving caterpillars to unattacked leaves of the same plant, we demonstrate that larvae on WT plants can grow and consume leaves as fast as those on ir-coi1 plants, a result that underscores the role of COI1 in mediating locally induced resistance in attacked leaves, and the importance of herbivore movement in avoiding the induced defenses of a plant. When transplanted into native habitats in the Great Basin Desert, ir-coi1 plants suffer greatly from damage by the local herbivore community, which includes herbivores not commonly found on N. attenuata WT plants. Choice assays with field-grown plants confirmed the increased attractiveness of ir-coi1 plants for both common and unusual herbivores. We conclude that NaCOI1 is essential for induced resistance in N. attenuata, and that ir-coi1 plants highlight the benefits of herbivore movement for avoiding induced defenses.  相似文献   

10.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

11.
12.
1. Abrasive material in the diet of herbivorous organisms comes from a variety of sources, including crystalline silica or calcium in plant tissues, accidentally ingested soil while digging or grazing, and entrapped substrate on the surfaces of plants. A wide variety of plants entrap substrate, usually with glandular trichomes. 2. A previous study demonstrated that entrapped sand provided resistance to herbivory in the field. In this study, the following questions were addressed: how does entrapped sand on Abronia latifolia (Nyctaginaceae) leaves and stems affect preference and performance of a common herbivore, the large‐bodied caterpillar Hyles lineata (Sphingidae); does this effect differ from those experienced by an internally feeding leaf miner? 3. Using a combination of experimental and observational approaches, it was found that sand comprised ~4–5% of ingested weight during normal feeding of H. lineata caterpillars. This entrapped sand caused extensive wear to their mandibles, they avoided sand‐covered plants when given the choice, and the sand negatively impacted performance metrics, including pupal weight, development time, and growth rate. In contrast, a leaf‐mining caterpillar did not have a preference for or against feeding on sandy plants. 4. These results are similar to studies on mandibular wear due to grasses, and herbivorous insects that feed on these two plant groups may have similar morphologies. It is hypothesised that increased wear potential may be a convergent solution to abrasive plants in both mammals (hypsodonty) and insects.  相似文献   

13.
The jasmonate pathway is a highly conserved defensive cascade in plants that regulates the induction of resistance against herbivores; however, its role in herbivore feeding behaviour remains unknown. We used a mutant tomato plant (def‐1) deficient in the production of jasmonate‐related defensive proteins to test the hypothesis that genotypes with a reduced ability to induce resistance have a higher and more concentrated pattern of herbivore damage. Wild‐type and def‐1 plants received either damage by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) caterpillars or no damage. After treatment, we tested for systemic responses by allowing a free roaming S. exigua caterpillar to feed on the undamaged portions of plants. Weight‐gain and leaf consumption of S. exigua were highest on def‐1 plants, regardless of prior herbivore damage. Def‐1 plants also had fewer numbers of leaves and leaflets eaten, and fewer feeding holes, which was indicative of a more concentrated distribution of damage on mutant compared to wild‐type plants. Following these results, we mimicked the amount and distribution of feeding damage that wild‐type or jasmonate‐deficient plants would receive on wild‐type plants to test whether changes in feeding behaviour may feedback to influence the expression of induced resistance. We mimicked the distribution of damage in wild‐type and jasmonate‐deficient plants by allowing caterpillars to feed on either one (leaf 1 or 2) or two leaves (leaf 1 and 2). Increased herbivore damage resulted in higher proteinase inhibitor (PI) activity, a jasmonate‐regulated defensive protein, and lower S. exigua performance on wild‐type but not jasmonate‐deficient plants. Compared to undamaged plants, a concentrated pattern of herbivore damage increased systemic resistance; these induced responses were greater on leaflets with stronger vascular connections to the damaged leaf. A more dispersed pattern of caterpillar damage altered the expression of induced responses, but the outcome depended on the specific pattern of damage. When leaf 1 was damaged and then leaf 2, the undamaged (third) leaf (which is more strongly connected to leaf 1 than 2) expressed reduced the PI activity compared to plants receiving concentrated damage to leaf 1; whereas in plants where leaf 2 was first damaged and then leaf 1, there were no differences in PI activity in leaf 3 compared to plants receiving concentrated damage to leaf 2. Thus, induction of the jasmonate pathway may not only determine the amount and distribution of feeding damage by herbivores, but this may feedback to affect the subsequent expression of plant defence.  相似文献   

14.
15.
16.
17.
During metamorphosis of the hawkmoth, Manduca sexta, some larval muscles degenerate while others are respecified for new functions. In larvae, accessory planta retractor muscles (APRMs) are present in abdominal segments 1 to 6 (A1 to A6). APRMs serve as proleg retractors in A3 to A6 and body wall muscles in A1 and A2. At pupation, all APRMs degenerate except those in A2 and A3, which are respecified to circulate hemolymph in pupae. The motoneurons that innervate APRMs, the APRs, likewise undergo segment‐specific programmed cell death (PCD), as a direct, cell‐autonomous response to the prepupal peak of ecdysteroids. The segment‐specific patterns of APR and APRM death differ. The present study tested the hypothesis that APRM death is a direct, cell‐autonomous response to the prepupal peak of ecdysteroids. Prevention of the prepupal peak prevented APRM degeneration, and replacement of the peak by infusion of 20‐hydroxyecdysone restored the correct segment‐specific pattern of APRM degeneration. Surgical denervation of APRMs did not perturb their segment‐specific degeneration at pupation, indicating that signals from APRs are not required for the muscles' segment‐specific responses to ecdysteroids. The possibility that instructive signals originate from APRMs' epidermal attachment points was tested by treating the epidermis with a juvenile hormone analog to prevent pupal development. This manipulation likewise did not alter APRM fate. We conclude that both the muscles and motoneurons in this motor system respond directly and cell‐autonomously to prepupal ecdysteroids to produce a segment‐specific pattern of PCD that is matched to the functional requirements of the pupal body. © 2004 Wiley Periodicals, Inc. J Neurobiol, 2005  相似文献   

18.
The context‐dependent defence (CDD) hypothesis predicts that defence levels of plant species against herbivory are not fixed but vary with environmental conditions, in a way that is specific for plant species that share evolutionary adaptations to resource conditions exemplified by similar maximum relative growth rates. More specifically, we expected plants from resource‐poor environments to display high defence levels but not when grown under resource‐rich conditions, whereas the reverse – plants from resource‐rich conditions displaying low defence levels but not when grown under resource‐poor conditions – is not necessarily the case. In this study, we used multiple‐choice bioassays in which leaf discs were fed to larvae of Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) as an efficient and effective way of indicating plant defence levels. This generalist herbivore was capable of detecting both inter‐ and intraspecific differences in defence among plant species. The CDD was tested by exploring the effects of various experimental resource conditions (light, nutrients) upon the herbivore preferences and by comparing these preferences with the maximum relative growth rate of plant species. The experimental results provide general support for the CDD hypothesis with respect to nutrient‐level variation but the effects were not related to the origin of the plant species tested. Variation in light conditions did not result in consistent effects upon herbivore preferences. The CDD therefore can be formulated more precisely as: defence levels of plant species vary under different environmental conditions but in a way that is specific for plant species that share evolutionary adaptations to similar nutrient conditions. This more precise CDD hypothesis is a useful addition to existing optimal‐defence theory because of its focus on the possible plastic effects of resource conditions upon plant defence levels. This is relevant when designing experimental plant–herbivore studies.  相似文献   

19.
1. Understanding the degree to which populations and communities are limited by both bottom‐up and top‐down effects is still a major challenge for ecologists, and manipulation of plant quality, for example, can alter herbivory rates in plants. In addition, biotic defence by ants can directly influence the populations of herbivores, as demonstrated by increased rates of herbivory or increased herbivore density after ant exclusion. The aim of this study was to evaluate bottom‐up and top‐down effects on herbivory rates in a mutualistic ant‐plant. 2. In this study, the role of Azteca alfari ants as biotic defence in individuals of Cecropia pachystachya was investigated experimentally with a simultaneous manipulation of both bottom‐up (fertilisation) and top‐down (ant exclusion) factors. Four treatments were used in a fully factorial design, with 15 replicates for each treatment: (i) control plants, without manipulation; (ii) fertilised plants, ants not manipulated; (iii) unfertilised plants and excluded ants and (iv) fertilised plants and ants excluded. 3. Fertilisation increased the availability of foliar nitrogen in C. pachystachya, and herbivory rates by chewing insects were significantly higher in fertilised plants with ants excluded. 4. Herbivory, however, was more influenced by bottom‐up effects – such as the quality of the host plant – than by top‐down effects caused by ants as biotic defences, reinforcing the crucial role of leaf nutritional quality for herbivory levels experienced by plants. Conditionality in ant defence under increased nutritional quality of leaves through fertilisation might explain increased levels of herbivory in plants with higher leaf nitrogen.  相似文献   

20.
Inhibition of jasmonic acid (JA) signaling has been shown to decrease herbivore resistance, but the responsible mechanisms are largely unknown because insect resistance is poorly understood in most model plant systems. We characterize three members of the lipoxygenase (LOX) gene family in the native tobacco plant Nicotiana attenuata and manipulate, by antisense expression, a specific, wound- and herbivory-induced isoform (LOX3) involved in JA biosynthesis. In three independent lines, antisense expression reduced wound-induced JA accumulation but not the release of green leaf volatiles (GLVs). The impaired JA signaling reduced two herbivore-induced direct defenses, nicotine and trypsin protease inhibitors (TPI), as well as the potent indirect defense, the release of volatile terpenes that attract generalist predators to feeding herbivores. All these defenses could be fully restored by methyl-JA (MeJA) treatment, with the exception of the increase in TPI activity, which was partially restored, suggesting the involvement of additional signals. The impaired ability to produce chemical defenses resulted in lower resistance to Manduca sexta attack, which could also be restored by MeJA treatment. Expression analysis using a cDNA microarray, specifically designed to analyze M. sexta-induced gene expression in N. attenuata, revealed a pivotal role for LOX3-produced oxylipins in upregulating defense genes (protease inhibitor, PI; xyloglucan endotransglucosylase/hydrolase, XTH; threonine deaminase, TD; hydroperoxide lyase, HPL), suppressing both downregulated growth genes (RUBISCO and photosystem II, PSII) and upregulated oxylipin genes (alpha-dioxygenase, alpha-DOX). By genetically manipulating signaling in a plant with a well-characterized ecology, we demonstrate that the complex phenotypic changes that mediate herbivore resistance are controlled by a specific part of the oxylipin cascade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号