首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H. Gabryś 《Planta》1985,166(1):134-140
The profile-to-face chloroplast movement in the green alga Mougeotia has been induced by strong blue and near-ultraviolet light pulses (6 J m-2). Simultaneously, strong red or far-red light (10 W m-2) was applied perpendicularly to the inducing beam. The response was measured photometrically. Against the far-red background the reciprocity law was found to hold for pulse durations varying two orders of magnitude. The action spectrum exhibited a maximum near 450 nm and a distinct increase in near-ultraviolet. The time-course and the spectral dependence of pulse responses of chloroplasts in Mougeotia were similar to those recorded for other plants which are sensitive only to blue. This points to an alternative sensor system active in the short-wavelength region in addition to the phytochrome system.Abbreviations FR far-red light - Pr red absorbing form of phytochrome - Pfr far-red absorbing form of phytochrome - R red light This paper is dedicated to the memory of Professor Jan Zurzycki  相似文献   

2.
Chloroplast movement   总被引:12,自引:4,他引:12  
Abstract. Chloroplasts redistribute and/or reorientate in the cell as a response to the light direction, resulting in patterns typical for light of low or high fluence rate, respectively. Usually, the main photoreceptor pigment is a blue-UV-absorbing pigment ('cryptochrome'), but in a few exceptional cases, the reversible red/far-red system phytochrome is involved. Detection of light direction is based on light refraction and/or on dichroic orientation of photoreceptor molecules. Membrane effects, intracellular calcium redistribution and calcium-calmodulin interaction are discussed as likely steps in signal transduction . In the response mechanism the actin-myosin system is involved. However, several details of perception, transduction and response are still unsolved and open for discussion. Particularly interesting are the cases of multiple photoreceptor systems , i.e. those where separate transduction chains are started which coact or interact with each other. This raises the question as to the evolution of multiple photoreceptor systems under the assumption that light-oriented chloroplast movements serve to optimize photosynthesis.  相似文献   

3.
ABSTRACT

Chloroplast movements provide a means for fine-tuning the absorption of radiation in leaves. Since evergreen sclerophylls may experience very different light levels during the seasons and at different locations either at the periphery or in the interior of a forest, such a mechanism must theoretically be of great importance for them. Detailed field and laboratory studies on sclerophylls are however lacking. We provide first evidence that chloroplasts in the leaf mesophyll of both Ilex aquifolium (holly) and Prunus laurocerasus (cherry laurel) may be stimulated by low light intensities. Even at winter temperatures close to freezing, chloroplasts move to a position where light absorption is increased. Effects of temperature, light pretreatment and light quality for the induction of movement are described.  相似文献   

4.
The movements of chloroplasts in response to varying levels and wavelengths of incident light were investigated in leaves of four fern species: Adiantum capillus-veneris, Adiantum caudatum, Adiantum diaphanum and Pteris cretica. In all of the species studied blue light induced chloroplast redistribution resulting in face and profile patterns that were typical of low and high fluence rates, respectively. Fluence rate response characteristics and the kinetics of transmission changes accompanying these blue-light-induced movements were similar to those observed in the leaves of higher plants. Only in A. capillus-veneris was the distribution of chloroplasts affected by red light. The response was of the weak-light type, irrespective of the light intensity. The most effective fluence rate for red light was found to be below 7·2 μmol m–2 s–1 (1 W m–2). The effect of red light was far-red reversible, indicating phytochrome involvement. Chloroplast responses were more dynamic in A. capillus-veneris and P. cretica, the two species that exhibited higher environmental flexibility.  相似文献   

5.
北方地区藤本类忍冬叶表皮结构及其生态适应性比较研究   总被引:7,自引:1,他引:7  
利用光镜和扫描电镜观察了8种在北京地区引种栽培成功的藤本类忍冬的叶表皮形态,观察指标包括气孔器、表皮毛、表皮细胞特征等.结合其在北京的栽培状况,发现叶片表皮形态和解剖结构与生态适应性之间有很强的相关性.自然分布广、适应性强的种在叶表皮形态上表现出气孔密度大、表皮细胞小、被毛或叶革质等特征.金银花、红白忍冬、淡红忍冬是8种忍冬中适应性最强的,具有推广应用价值.本研究为藤本类忍冬在北方地区推广应用提供了理论基础.  相似文献   

6.
7.
Abstract

Regenerated plants of Lycopersicon esculentum var. Alice were obtained from in vitro culture of cotyledons. Some of them showed different grades of leaf variegation, but a few plants were completely white. Here the chloroplasts of the mesophyll cells had completely failed to differentiate and contained no thylakoids. On the contrary those of the epidermal and stomata guard cells were normally developed. This suggests that in the albino plants a mutation had occurred in the submarginal initial cell responsible for mesophyll formation.  相似文献   

8.
Red light-induced chloroplast movement in Physcomitrella patens (Pp) is mediated by dichroic phytochrome in the cytoplasm. To analyze the molecular function of the photoreceptor in the cytoplasm, we developed a protoplast system in which chloroplast photomovement was exclusively dependent on the expression of phytochrome cDNA constructs introduced by polyethylene glycol (PEG) transformation. YFP was fused to the phytochrome constructs and their expression was detected by fluorescence. The chloroplast avoidance response was induced in the protoplasts expressing a YFP fusion of PHY1-PHY3, but not of PHY4 or YFP alone. Phy::yfp fluorescence was detected in the cytoplasm. No change in the location of phy1::yfp or phy2::yfp was revealed before and after photomovement. When phy1::yfp and phy2::yfp were targeted to the nucleus by fusing a nuclear localization signal to the constructs, red light avoidance was not induced. To determine the domains of PHY2 essential for avoidance response, various partially-deleted PHY2::YFP constructs were tested. The N-terminal extension domain (NTE) was found to be necessary but the C-terminal histidine kinase-related domain (HKRD) was dispensable. An avoidance response was not induced under expression of phytochrome N-terminal half domain [deleting both the PAS (Per, Arnt, Sim)-related domain (PRD) and HKRD]. GUS fusion of this N-terminal half domain, reported to be fully functional in Arabidopsis for several phyA- and phyB-regulated responses was not effective in chloroplast avoidance movement. Domain requirement and GUS fusion effect were also confirmed in PHY1. These results indicate that Pp phy1-Pp phy3 in the cytoplasm mediate chloroplast avoidance movement, and that NTE and PRD, but not HKRD, are required for their function.  相似文献   

9.
We surveyed 24 plant species to examine how leaf anatomy influenced chloroplast movement and how the optical properties of leaves change with chloroplast position. All species examined exhibited light-dependent chloroplast movements but the associated changes in leaf absorptance varied considerably in magnitude. Chloroplast movement-dependent changes in leaf absorptance were greatest in shade species, in which absorptance changes of >10% were observed between high- and low-light treatments. Using the Kubelka-Munk theory, we found that changes in the absorption (k) and chlorophyll a absorption efficiency (k*) associated with chloroplast movement correlated with cell diameter, such that the narrower, more columnar cells found in sun leaves restricted the ability of chloroplasts to move. The broader, more spherical cells of shade leaves allowed greater chloroplast rearrangements and in low-light conditions allowed efficient light capture. Across the species tested, light-dependent chloroplast movements modulated leaf optical properties and light absorption efficiency by manipulating the package (sieve or flattening) effect but not the detour (path lengthening) effect.  相似文献   

10.
11.
Adaptational changes occurring in the lipids and fatty acids of the cell and the thylakoid membrane in response to high light treatment, was studied in 30 days old rice (Oryza sativa L. cv. Jyothi) plants grown under low (150–200 μmol m−2 s−1) or moderate (600–800 μmol m−2 s−1) light conditions. Results were compared with rice plants grown in high (1200–2200 μmol m−2 s−1) light conditions. Exposure of rice plants and isolated chloroplast to high light, resulted in an increase in the amount of malonaldehyde, indicating oxidation of membrane lipids. Qualitative and quantitative changes in the phosphoglycolipids and quantitative changes in neutral lipids were observed in rice plants grown under the different growth conditions. A few of the phosphoglycolipids and neutral lipids were present exclusively in plants grown at low or moderate or high light, indicating requirement of different type of lipid composition of rice plants in response to their different growth irradiances. However, no significant quantitative changes were observed in the different saturated and unsaturated fatty acid groups of total lipids in low, moderate and high light grown rice plants, as a result of exposure to high light. No qualitative changes in the fatty acid composition due to difference in growth irradiance or high light treatment were seen. The changes observed in the phosphoglycolipids and neutral lipid composition of cell and thylakoid membrane of low, moderate and high light grown rice plants in response to high light, are probably the result of physiological changes in the rice plants, to sustain optimum structure and function of the cell and thylakoid membrane to maintain active physiological functions to endure high light conditions.  相似文献   

12.
  • C4 plants supply concentrated CO2 to bundle sheath (BS) cells, improving photosynthetic efficiency by suppressing photorespiration. Mesophyll chloroplasts in C4 plants are redistributed toward the sides of the BS cells (aggregative movement) in response to environmental stresses under light. Although this chloroplast movement is common in C4 plants, the significance and mechanisms underlying the aggregative movement remain unknown.
  • Under environmental stresses, such as drought and salt, CO2 uptake from the atmosphere is suppressed by closing stomata to prevent water loss. We hypothesized that CO2 limitation may induce the chloroplast aggregative movement. In this study, the mesophyll chloroplast arrangement in a leaf of finger millet, an NAD-malic enzyme type C4 plant, was examined under different CO2 concentrations and light conditions.
  • CO2 limitation around the leaves promoted the aggregative movement, but the aggregative movement was not suppressed, even at the higher CO2 concentration than in the atmosphere, under high intensity blue light. In addition, mesophyll chloroplasts did not change their arrangement under darkness or red light.
  • From these results, it can be concluded that CO2 limitation is not a direct inducer of the aggregative movement but would be a promoting factor of the movement under high intensity blue light.
  相似文献   

13.
Microtubules, the major components of cytoskeleton, are involved in various fundamental biological processes in plants. Recent studies in mammalian cells have revealed the importance of microtubule cytoskeleton in autophagy. However, little is known about the roles of microtubules in plant autophagy. Here, we found that ATG6 interacts with TUB8/β-tubulin 8 and colocalizes with microtubules in Nicotiana benthamiana. Disruption of microtubules by either silencing of tubulin genes or treatment with microtubule-depolymerizing agents in N. benthamiana reduces autophagosome formation during upregulation of nocturnal or oxidation-induced macroautophagy. Furthermore, a blockage of leaf starch degradation occurred in microtubule-disrupted cells and triggered a distinct ATG6-, ATG5- and ATG7-independent autophagic pathway termed starch excess-associated chloroplast autophagy (SEX chlorophagy) for clearance of dysfunctional chloroplasts. Our findings reveal that an intact microtubule network is important for efficient macroautophagy and leaf starch degradation.  相似文献   

14.
The discovery of phototropins, photoreceptors for chloroplast responses in Arabidopsis thaliana, brought about renewed interest in these blue light-controlled movements. Recent progress in research on their mechanisms in higher plants is briefly summarized. Phototropins mediate phototropism, chloroplast relocations and stomatal movements. Their functions are partially overlapping, with phot1 active predominantly in weak light and phot2 active in strong light. The accumulation response of chloroplasts appears to be mediated by phot1 and phot2 whereas the avoidance response is controlled by phot2. The role of Ca2+ as a potential intracellular messenger has been discussed in view of the recently demonstrated blue light-induced transient increases in the cytosolic Ca2+ mediated differently by phot1 and phot2. Differential inhibition of accumulation and avoidance responses by wortmannin, the inhibitor of phosphoinositide-3 kinases, in Lemna trisulca points to an important role of these enzymes in the signal transduction. A new, multi-domain component controlling chloroplast positioning and movement, CHUP1, encodes an actin-binding protein in Arabidopsis.  相似文献   

15.
Changes in the structural characteristics of mesophyll induced by shading were investigated in ten species of wild plants of diverse functional types. In all plant types, shading reduced leaf thickness and density by 30–50% and total surface of mesophyll, by 30–70%. The extent and mechanisms of mesophyll structural rearrangement depended on the plant functional type. In the ruderal plants, integral parameters of mesophyll, such as the surface of cells and chloroplasts and mesophyll resistance, changed threefold predominantly because of changes in the dimensions of the cells and chloroplasts. In these plants, shading reduced the volume of chloroplasts by 30%, and the chloroplast numbers per cell declined. The competitor plants showed a twofold increase in mesophyll resistance due to a decrease in the number of photosynthesizing cells per leaf area unit. Moreover, these plants maintained constant dimensions of mesophyll cells, ratios mesophyll surface/mesophyll volume and chloroplast surface/cell surface. In stress-tolerant plants, diffusion resistance of mesophyll remained the same irrespective of the growing conditions, and mesophyll rearrangement was associated with inversely proportional changes in the dimensions of the cells and cell volume per chloroplast. Noteworthy of these plants were relatively constant chloroplasts number per cell, per leaf area unit and total surface area of chloroplasts. The nature of relationship between the mesophyll diffusion resistance and structural parameters of leaf mesophyll differed in plants of diverse functional types.  相似文献   

16.
17.
Synková  H.  Pechová  R.  Valcke  R. 《Photosynthetica》2003,41(1):117-126
Changes in chloroplast ultrastructure and total content of endogenous cytokinins (CK) were studied during different phases of plant development in transgenic Pssu-ipt tobacco (Nicotiana tabacum L. cv. Petit Havana SR1). Permanent overproduction of CK was found in both rooted (SE) and grafted (G) Pssu-ipt plants in all phases of plant development with the peak in vegetative and flowering phase in the latter ones. No such a correlation was observed in SE on the contrary to control non-transgenic plants (SR1) and grafts (SRG), which showed also CK increase at juvenile and flowering phases. No significant differences in parameters of chloroplast ultrastructure, such as length of chloroplast, starch content, granum width, and number of thylakoids per granum, were proved between chloroplasts from young mature leaves of control and transgenic tobacco during plant ontogeny. Nevertheless, several anomalies in the ultrastructure of cell organelles were found in Pssu-ipt tobacco. Amoeboid shape of chloroplasts was often observed in connection with tubular clusters resembling peripheral reticulum. The distinct crystalline structures located in chloroplasts might be formed by LHC protein aggregates. Smaller crystals of unknown composition were found also in mitochondria. Numerous crystalline cores were present in peroxisomes. The alterations might be the result of imbalance of phytohormone content, degradation effect of CK overproduction, or the example of acclimation to permanent stress.  相似文献   

18.
Changes in some leaf characteristics: leaf mass area (LMA), content of photosynthetic pigments and nitrogen in the leaves, leaf mass ratio (LMR) and leaf area ratio (LAR) were investigated in steppe plants of the Volga land along the gradient of aridity. When drought stress became stronger, the content of chlorophylls in the leaves, LMR and LAR decreased, whereas LMA and the proportion of carotenoids in the leaves rose. In the North to South direction, the content of pigments and nitrogen per unit whole plant weight considerably decreased (4 and 2 times, respectively). The relationship between leaf indices (chlorophyll and nitrogen contents and LMA) differed along this gradient. It was concluded that adaptation of steppe plants to drought stress generally depended on predominant development of heterotrophic tissues in the leaf and the whole plant. During aridization, the stress-tolerant species became more numerous.  相似文献   

19.
Changes in the chloroplast ultra-structure and photochemical function were studied in detached barley (Hordeum vulgare L. cv. Akcent) leaf segments senescing in darkness or in continuous white light of moderate intensity (90 mumol m-2 s-1) for 5 days. A rate of senescence-induced chlorophyll degradation was similar in the dark- and light-senescing segments. The Chl a/b ratio was almost unchanged in the dark-senescing segments, whereas in the light-senescing segments an increase in this ratio was observed indicating a preferential degradation of light-harvesting complexes of photosystem II. A higher level of thylakoid disorganisation (especially of granal membranes) and a very high lipid peroxidation were observed in the light-senescing segments. In spite of these findings, both the maximal and actual photochemical quantum yields of the photosystem II were highly maintained in comparison with the dark-senescing segments.  相似文献   

20.
The photoreceptors in the high irradiance response of plants   总被引:1,自引:0,他引:1  
Several studies show that the high irradiance response (HIR) of plants is probably due to two photoreceptors. One of the photoreceptors is phytochrome, and the other is an unidentified pigment provisionally named heliochrome. One of the functions of heliochrome is the synthesis of phytochrome, using far-red and blue radiations of high intensities, to replace the phytochrome destroyed by light. Another possible function could be an interaction of heliochrome with a substance produced by phytochrome. The data presented show that heliochrome is a pigment with different properties from phytochrome. It shows a far-red/green reversibility. Heliochrome has been shown to participate with phytochrome in such HIRs as leaf movement in Albizzia and flowering in a long-day plant. The first event initiated by phytochrome and by heliochrome could be the generation of a strong positive, electrostatic charge in the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号