首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Aims: Isoprene (2‐methyl‐1,3‐butadiene; C5H8) is naturally produced by photosynthesis and emitted in the atmosphere by the leaves of many herbaceous, deciduous and woody plants. Fermentative yeast and fungi (Ascomycota) are not genetically endowed with the isoprene production process. The work investigated whether Ascomycota can be genetically modified and endowed with the property of constitutive isoprene production. Methods and Results: Two different strategies for expression of the IspS gene in Saccharomyces cerevisiae were employed: (i) optimization of codon usage of the IspS gene for specific expression in S. cerevisiae and (ii) multiple independent integrations of the IspS gene in the rDNA loci of the yeast genome. Copy number analysis showed that IspS transgenes were on the average incorporated within about 25% of the endogenous rDNA. Codon use optimization of the Pueraria montana (kudzu vine) IspS gene (SckIspS) for S. cerevisiae showed fivefold greater expression of the IspS protein compared with that of nonoptimized IspS (kIspS). With the strategies mentioned earlier, heterologous expression of the kudzu isoprene synthase gene (kIspS) in S. cerevisiae was tested for stability and as a potential platform of fermentative isoprene production. The multi‐copy IspS transgenes were stably integrated and expressed for over 100 generations of yeast cell growth and constitutively produced volatile isoprene hydrocarbons. Secondary chemical modification of isoprene to a number of hydroxylated isoprene derivatives in the sealed reactor was also observed. Conclusion: Transformation of S. cerevisiae with the Pueraria montana var. lobata (kudzu vine) isoprene synthase gene (IspS) conferred to the yeast cells constitutive isoprene hydrocarbons production in the absence of adverse or toxic effects. Significance and Impact of the Study: First‐time demonstration of constitutive isoprene hydrocarbons production in a fermentative eukaryote operated through the mevalonic acid pathway. The work provides concept validation for the utilization of S. cerevisiae, as a platform for the production of volatile hydrocarbon biofuels and chemicals.  相似文献   

4.
Isoprene emission from plants accounts for nearly half of all non‐methane hydrocarbons entering the atmosphere. Light and temperature regulate the instantaneous rate of isoprene emission but there is increasing evidence that they also affect the capacity for isoprene emission (i.e. the rate measured under standard conditions). We tested the rate of acclimation of the capacity for isoprene emission following step changes in growth conditions. Acclimation to new growth temperatures was very rapid, with most of the change occurring within a few hours and complete adjustment occurring within a day. Acclimation to new light levels was more complicated. Following a switch from low‐light growth conditions to standard assay conditions (30 °C and 1000 µmol photons m?2 s?1), there was a rapid (5–10 min) and a slightly slower (10–50 min) acclimation of the capacity for isoprene emission. After accounting for these short‐term changes, there was also a small, long‐term (4–6 d) acclimation of the isoprene emission capacity to the light level of growth conditions. We found no effect of growth conditions on the coefficients used to describe the instantaneous light and temperature response of isoprene emission. Therefore, current models of isoprene emission will only need to be altered to account for changes in the capacity for isoprene emission.  相似文献   

5.
Isoprene basal emission (the emission of isoprene from leaves exposed to a light intensity of 1000 µmol m?2 s?1 and maintained at a temperature of 30 °C) was measured in Phragmites australis plants growing under elevated CO2 in the Bossoleto CO2 spring at Rapolano Terme, Italy, and under ambient CO2 at a nearby control site. Gas exchange and biochemical measurements were concurrently taken. Isoprene emission was lower in the plants growing at elevated CO2 than in those growing at ambient CO2. Isoprene emission and isoprene synthase activity (IsoS) were very low in plants growing at the bottom of the spring under very rich CO2 and increased at increasing distance from the spring (and decreasing CO2 concentration). Distance from the spring did not significantly affect photosynthesis making it therefore unlikely that there is carbon limitation to isoprene formation. The isoprene emission rate was very quickly reduced after rapid switches from elevated to ambient CO2 in the gas‐exchange cuvette, whereas it increased when switching from ambient to elevated CO2. The rapidity of the response may be consistent with post‐translational modifications of enzymes in the biosynthetic pathway of isoprene formation. Reduction of IsoS activity is interpreted as a long‐term response. Basal emission of isoprene was not constant over the day but showed a diurnal course opposite to photosynthesis, with a peak during the hottest hours of the day, independent of stomatal conductance and probably dependent on external air temperature or temporary reduction of CO2 concentration. The present experiments show that basal emission rate of isoprene is likely to be reduced under future elevated CO2 levels and allow improvement in the modelling of future isoprene emission rates.  相似文献   

6.
Acclimation of foliage to growth temperature involves both structural and physiological modifications, but the relative importance of these two mechanisms of acclimation is poorly known, especially for isoprene emission responses. We grew hybrid aspen (Populus tremula x P. tremuloides) under control (day/night temperature of 25/20 °C) and high temperature conditions (35/27 °C) to gain insight into the structural and physiological acclimation controls. Growth at high temperature resulted in larger and thinner leaves with smaller and more densely packed chloroplasts and with lower leaf dry mass per area (MA). High growth temperature also led to lower photosynthetic and respiration rates, isoprene emission rate and leaf pigment content and isoprene substrate dimethylallyl diphosphate pool size per unit area, but to greater stomatal conductance. However, all physiological characteristics were similar when expressed per unit dry mass, indicating that the area‐based differences were primarily driven by MA. Acclimation to high temperature further increased heat stability of photosynthesis and increased activation energies for isoprene emission and isoprene synthase rate constant. This study demonstrates that temperature acclimation of photosynthetic and isoprene emission characteristics per unit leaf area were primarily driven by structural modifications, and we argue that future studies investigating acclimation to growth temperature must consider structural modifications.  相似文献   

7.
Oku  Hirosuke  Iwai  Shohei  Uehara  Misaki  Iqbal  Asif  Mutanda  Ishmael  Inafuku  Masashi 《Journal of plant research》2021,134(6):1225-1242

Despite its major role in global isoprene emission, information on the environmental control of isoprene emission from tropical trees has remained scarce. Thus, in this study, we examined the relationship between parameters of G-93 isoprene emission formula (CT1, CT2, and α), growth temperature and light intensity, photosynthesis (?, Pmax), isoprene synthase (IspS) level, and 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway metabolites using sunlit and shaded leaves of four tropical trees. The results showed that the temperature dependence of isoprene emission from shaded leaves did not differ significantly from sunlit leaves. In contrast, there was a lower saturation irradiance in shaded leaves than in sunlit leaves, the same as temperate plants. The photosynthesis rate of shaded leaves showed lower saturation irradiance, similar to the light dependence of isoprene emission. In most cases, the concentration of MEP pathway metabolites was of lower tendency in shaded leaves versus in sunlit leaves, whereas no significant difference was noted in IspS level between sunlit and shaded leaves. Correlation analysis between these parameters found that CT1 of the G-93 parameter was positively correlated with the concentration of DXP and DMADP, whereas CT2 correlated with the concentration of MEP and the average air temperature for the past 48 h. Similarly, α closely associated with the initial slope (?) of photosynthesis rate, and the basal emission factor is also linked to the photon flux of past days. These results suggest that growth conditions may control the temperature dependence of isoprene emission from tropical trees via the changes in the profiles of MEP pathway metabolites, causing alteration in the parameters of the isoprene emission formula.

  相似文献   

8.
Biochemical regulation of isoprene emission   总被引:8,自引:2,他引:8  
Isoprene (C5H8) is emitted from many plants and has a substantial effect on atmospheric chemistry. There are several models to estimate the rate of isoprene emission used to calculate the impact of isoprene on atmospheric processes. The rate of isoprene synthesis will depend either on the activity of isoprene synthase or the availability of its substrate dimethylallyl pyrophosphate (DMAPP). To investigate long‐term regulation of isoprene synthesis, the isoprene emission rate of 15 kudzu leaves was measured. The chloroplast DMAPP level of the five leaves with the highest emission rates and the five leaves with the lowest rates were determined by non‐aqueous fractionation of the bulked leaf samples. Leaves with high basal emission rates had low levels of DMAPP whereas leaves with low basal emission rates had high DMAPP levels in their chloroplasts indicating that the activity of isoprene synthase exerts primary control over the basal emission rate. To investigate short‐term regulation, isoprene precursors were fed to leaves. Feeding dideuterated deoxyxylulose (DOX‐d2) to Eucalyptus leaves resulted in the emission of dideuterated isoprene. Results from DOX‐d2 feeding experiments indicated that control of isoprene emission rate was shared between reactions upstream and downstream of the DOX entry into isoprene metabolism. In CO2‐free air DOX always increased isoprene emission indicating that carbon availability was an important control factor. In N2, isoprene emission stopped and could not be recovered by adding DOX‐d2. Taken together, these results indicate that the regulation of isoprene emission is shared among several steps and the relative importance of the different steps in controlling isoprene emission varies with conditions.  相似文献   

9.
10.
11.
Eucalypts are major emitters of biogenic volatile organic compounds (BVOCs), especially volatile isoprenoids. Emissions and incorporation of 13C in BVOCs were measured in Eucalyptus camaldulensis branches exposed to rapid heat stress or progressive temperature increases, in order to detect both metabolic processes and their dynamics. Isoprene emission increased and photosynthesis decreased with temperatures rising from 30°C to 45°C, and an increasing percentage of unlabelled carbon was incorporated into isoprene in heat‐stressed leaves. Intramolecular labelling was also incomplete in isoprene emitted by heat‐stressed leaves, suggesting increasing contribution of respiratory (and possibly also photorespiratory) carbon. At temperature above 45°C, a drop of isoprene emission was mirrored by the appearance of unlabelled monoterpenes, green leaf volatiles, methanol, and ethanol, indicating that the emission of stored volatiles was mainly induced by cellular damage. Emission of partially labelled acetaldehyde was also observed at very high temperatures, suggesting a double source of carbon, with a large unlabelled component likely transported from roots and associated to the surge of transpiration at very high temperatures. Eucalypt plantations cover large areas worldwide, and our findings may dramatically change forecast and modelling of future BVOC emissions at planetary level, especially considering climate warming and frequent heat waves.  相似文献   

12.
The effects of high temperature on isoprene synthesis in oak leaves   总被引:3,自引:0,他引:3  
Isoprene emission from plants is highly temperature sensitive and is common in forest canopy species that experience rapid leaf temperature fluctuations. Isoprene emission declines with temperature above 35 °C but the temperature at which the decline begins varies between 35 and 44 °C. This variability is caused by the rate at which leaf temperature is increased during measurement with lower temperatures associated with longer measurement cycles. To investigate this we exposed leaves of red oak (Quercus rubra L.) to temperature regimes of 35–45 °C for periods of 20–60 min. Isoprene emission increased during the first 10 min of high temperature exposure and then decreased over the next 10 min until it reached steady state. This phenomenon was common at temperatures above 35 °C but was not noticeable at temperatures below that. The response was reversible within 30 min by lowering leaf temperature to 30 °C. Because there is no storage of isoprene inside the leaf, this behaviour indicates regulation of isoprene synthesis in the leaf. We demonstrated that the variability in isoprene decline results from regulation and explains the variability in the temperature response. This is consistent with our theory that isoprene protects leaves from damage caused by rapid temperature fluctuations.  相似文献   

13.
The long‐term effect of elevated atmospheric CO2 on isoprenoid emissions from adult trees of two Mediterranean oak species (the monoterpene‐emitting Quercus ilex L. and the isoprene‐emitting Quercus pubescens Willd.) native to a high‐CO2 environment was investigated. During two consecutive years, isoprenoid emission was monitored both at branch level, measuring the actual emissions under natural conditions, and at leaf level, measuring the basal emissions under the standard conditions of 30 °C and at light intensity of 1000 µmol m?2 s?1. Long‐term exposure to high atmospheric levels of CO2 did not significantly affect the actual isoprenoid emissions. However, when leaves of plants grown in the control site were exposed for a short period to an elevated CO2 level by rapidly switching the CO2 concentration in the gas‐exchange cuvette, both isoprene and monoterpene basal emissions were clearly inhibited. These results generally confirm the inhibitory effect of elevated CO2 on isoprenoid emission. The absence of a CO2 effect on actual emissions might indicate higher leaf temperature at elevated CO2, or an interaction with multiple stresses some of which (e.g. recurrent droughts) may compensate for the CO2 effect in Mediterranean ecosystems. Under elevated CO2, isoprene emission by Q. pubescens was also uncoupled from the previous day's air temperature. In addition, pronounced daily and seasonal variations of basal emission were observed under elevated CO2 underlining that correction factors may be necessary to improve the realistic estimation of isoprene emissions with empirical algorithms in the future. A positive linear correlation of isoprenoid emission with the photosynthetic electron transport and in particular with its calculated fraction used for isoprenoid synthesis was found. The slope of this relationship was different for isoprene and monoterpenes, but did not change when plants were grown in either ambient or elevated CO2. This suggests that physiological algorithms may usefully predict isoprenoid emission also under rising CO2 levels.  相似文献   

14.
In a laboratory study, we investigated the monoterpene emissions from Quercus ilex, an evergreen sclerophyllous Mediterranean oak species whose emissions are light dependent. We examined the light and temperature responses of individual monoterpenes emitted from leaves under various conditions, the effect of heat stress on emissions, and the emission-onset during leaf development. Emission rate increased 10-fold during leaf growth, with slight changes in the composition. At 30 °C and saturating light, the monoterpene emission rate from mature leaves averaged 4·1 nmol m–2 s–1, of which α-pinene, sabinene and β-pinene accounted for 85%. The light dependence of emission was similar for all monoterpenes: it resembled the light saturation curve of CO2 assimilation, although monoterpene emission continued in the dark. Temperature dependence differed among emitted compounds: most of them exhibited an exponential increase up to 35 °C, a maximum at 42 °C, and a slight decline at higher temperatures. However, the two acyclic isomers cis-β-ocimene and trans-β-ocimene were hardly detected below 35 °C, but their emission rates increased above this temperature as the emission rates of other compounds fell, so that total emission of monoterpenes exponentially increased from 5 to 45 °C. The ratio between ocimene isomers and other compounds increased with both absolute temperature and time of heat exposure. The light dependence of emission was insensitive to the temperature at which it was measured, and vice versa the temperature dependence was insensitive to the light regime. The results demonstrated that none of the models currently applied to simulate isoprene or monoterpene emissions correctly predicts the short-term effects of light and temperature on Q. ilex emissions. The percentage of fixed carbon lost immediately as monoterpenes ranged between 0·1 and 6·0% depending on temperature, but rose up to 20% when leaves were continuously exposed to temperatures between 40 and 45 °C.  相似文献   

15.
16.
In growing leaves, lack of isoprene synthase (IspS) is considered responsible for delayed isoprene emission, but competition for dimethylallyl diphosphate (DMADP), the substrate for both isoprene synthesis and prenyltransferase reactions in photosynthetic pigment and phytohormone synthesis, can also play a role. We used a kinetic approach based on post‐illumination isoprene decay and modelling DMADP consumption to estimate in vivo kinetic characteristics of IspS and prenyltransferase reactions, and to determine the share of DMADP use by different processes through leaf development in Populus tremula. Pigment synthesis rate was also estimated from pigment accumulation data and distribution of DMADP use from isoprene emission changes due to alendronate, a selective inhibitor of prenyltransferases. Development of photosynthetic activity and pigment synthesis occurred with the greatest rate in 1‐ to 5‐day‐old leaves when isoprene emission was absent. Isoprene emission commenced on days 5 and 6 and increased simultaneously with slowing down of pigment synthesis. In vivo Michaelis–Menten constant (Km) values obtained were 265 nmol m?2 (20 μm ) for DMADP‐consuming prenyltransferase reactions and 2560 nmol m?2 (190 μm ) for IspS. Thus, despite decelerating pigment synthesis reactions in maturing leaves, isoprene emission in young leaves was limited by both IspS activity and competition for DMADP by prenyltransferase reactions.  相似文献   

17.
There is a growing awareness of the role of vegetation as a source of reactive hydrocarbons that may serve as photochemical oxidant precursors. A study was designed to assess independently the influence of variable light and temperature on isoprene emissions from live oak (Quercus virginiana Mill.). Plants were conditioned in a growth chamber and then transferred to an environmentally controlled gas-exchange chamber. Samples of the chamber atmosphere were collected; isoprene was concentrated cryogenically and measured by gas chromatography. A logistic function was used to model isoprene emission rates. Under regimes of low temperature (20°C) or darkness, isoprene emissions were lowest. With increasing temperature or light intensity, the rate of isoprene emission increased, reaching maxima at 800 μE m-2 s-1 and 40–44°C, respectively. Higher temperatures caused a large decrease in emissions. Since the emissions of isoprene were light-saturated at moderate intensities, temperature appeared to be the main factor controlling emissions during most of the day. Carbon lost through isoprene emissions accounted for 0.1 to 2% of the carbon fixed during photosynthesis depending on light intensity and temperature.  相似文献   

18.
19.
The supratidal amphipod Talorchestia longicornis Say has a circadian rhythm in activity, in which it is active on the substrate surface at night and inactive in burrows during the day. The present study determined: (1) the circadian rhythms in individual versus groups of amphipods; (2) the range of temperature cycles that entrain the circadian rhythm; (3) entrainment by high-temperature cycles versus light?:?dark cycles, and (4) seasonal substrate temperature cycles. The circadian rhythm was determined by monitoring temporal changes in surface activity using a video system. Individual and groups of amphipods have similar circadian rhythms. Entrainment occurred only to temperature cycles that included temperatures below 20°C (10–20, 15–20, 17–19, 15–25°C) but not to temperatures above 20°C (20–25, 20–30°C), and required only a 2°C temperature cycle (17–19°C). Diel substrate temperatures were above 20°C in the summer and below 20°C during the winter. Upon simultaneous exposure to a diel high-temperature cycle (20–30°C) and a light?:?dark cycle phased differently, amphipods entrained to the light?:?dark cycle. Past studies found that a temperature cycle below 20°C overrode the light?:?dark cycle for entrainment. The functional significance of this change in entrainment cues may be that while buried during the winter, the activity rhythm remains in phase with the day?:?night cycle by the substrate temperature cycles. During the summer, T. longicornis switches to the light?:?dark cycle for entrainment, perhaps as a mechanism to phase activity precisely to the short summer nights.  相似文献   

20.
Changes of the volatile organic compounds (VOC) emission capacity and composition of different developmental stages of the tropical tree species Hymenaea courbaril were investigated under field conditions at a remote Amazonian rainforest site. The basal emission capacity of isoprene changed considerably over the course of leaf development, from young to mature and to senescent leaves, ultimately spanning a wide range of observed isoprene basal emission capacities from 0.7 to 111.5 µg C g?1 h?1 during the course of the year. By adjusting the standard emission factors for individual days, the diel courses of instantaneous isoprene emission rates could nevertheless adequately be modelled by a current isoprene algorithm. The results demonstrate the inadequacy of using one single standard emission factor to represent the VOC emission capacity of tropical vegetation for an entire seasonal cycle. A strong linear correlation between the isoprene emission capacity and the gross photosynthetic capacity (GPmax) covering all developmental stages and seasons was observed. The present results provide evidence that leaf photosynthetic properties may confer a valuable basis to model the seasonal variation of isoprenoid emission capacity; especially in tropical regions where the environmental conditions vary less than in temperate regions. In addition to induction and variability of isoprene emission during early leaf development, considerable amounts of monoterpenes were emitted in a light‐dependent manner exclusively in the period between bud break and leaf maturity. The fundamental change in emission composition during this stage as a consequence of resource availability (supply side control) or as a plant's response to the higher defence demand of young emerging leaves (demand‐side control) is discussed. The finding of a temporary emergence of monoterpene emission may be of general interest in understanding both the ecological functions of isoprenoid production and the regulatory processes involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号