首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transition metals have been suggested to play a pivotal role in the pathogenesis of Parkinson's disease. X‐ray microscopy combined with a cryogenic setup is a powerful method for elemental imaging in low concentrations and high resolution in intact cells, eliminating the need for fixation and sectioning of the specimen. Here, we performed an elemental distribution analysis in cultured primary midbrain neurons with a step size in the order of 300 nm and ~ 0.1 ppm sensitivity under cryo conditions by using X‐ray fluorescence microscopy. We report the elemental mappings on the subcellular level in primary mouse dopaminergic (DAergic) and non‐DAergic neurons after treatment with transition metals. Application of Fe2+ resulted in largely extracellular accumulation of iron without preference for the neuronal transmitter subtype. A quantification of different Fe oxidation states was performed using X‐ray absorption near edge structure analysis. After treatment with Mn2+, a cytoplasmic/paranuclear localization of Mn was observed preferentially in DAergic neurons, while no prominent signal was detectable after Mn3+ treatment. Immunocytochemical analysis correlated the preferential Mn uptake to increased expression of voltage‐gated calcium channels in DAergic neurons. We discuss the implications of this differential elemental distribution for the selective vulnerability of DAergic neurons and Parkinson's disease pathogenesis.  相似文献   

2.
Heterococcoliths are micron‐scale calcite platelets produced by coccolithophores. They have been the most abundant and continuous fossil record over the last 215 million years (Myr), offering great potential for geochemical studies, although the heterococcolith fossil record remains underutilised in this domain. We have mapped heterococcoliths' composition using X‐ray fluorescence (XRF) with a 100‐nm resolution beam to decipher element distributions in heterococcoliths and to investigate the potential development of geochemical proxies for palaeoceanography. The study presents two Middle Jurassic Watznaueria britannica heterococcoliths from Cabo Mondego, Portugal. XRF analysis was performed with a 17 keV incident energy beam at the European Synchrotron Radiation Facility ID22NI beamline to study elements from Sr down to S. Ca, Sr and Mn are distributed following the heterococcolith crystalline arrangement. Cl, Br and S display an homogeneous distribution, whereas K, Fe, Cu, Zn and Rb are concentrated at the edges and in the central area of the heterococcoliths. Distributions of K, Fe, Ti, Fe, Cu, Zn, Rb and to a lesser extent V and Cr are highly influenced by clay contamination and peripheral diagenetic overgrowth. Mn is related to diagenetic Mn‐rich CaCO3 overgrowth on top of or between heterococcoliths shields. Cl and Br are likely to be present in heterococcoliths inside interstitial nano‐domains. We assume that the cytoplasm [Cl?] and [Br?] are mediated and constant during heterococcolithogenesis. Assuming a linear correlation between cytoplasm [Cl?] and sea water [Cl?], heterococcolith Cl may have potential as a salinity proxy. As S is incorporated into heterococcoliths by sulphated polysaccharides, our study suggests a role for such polysaccharides in heterococcolithogenesis for at least 170 Myr. The low Sr/Ca in the W. britannica specimens studied here may either highlight an unusual cellular physiology of Mesozoic coccolithophores or result from low growth rates in oligotrophic environments.  相似文献   

3.
Dynamic phase transformation in olivine LiFePO4 involving formation of one or more intermediate or metastable phases is revealed by an in situ time‐resolved X‐ray absorption near edge structure (XANES) technique. The XANES spectra measured during relaxation immediately after the application of relatively high overpotentials, where metastable phases are expected, show a continuous shift of the Fe K‐edge toward higher energy. Surprisingly, the Fe K‐edge relaxes to higher energies after current interrupt regardless of whether the cell is being charged or discharged. This relaxation phenomenon is superimposed upon larger shifts in K‐edge due to changes in Fe2+/Fe3+ ratio due to charging and discharging, and implies an intermediate phase of larger Fe? O bond length than any of the known crystalline phases. No intermediate crystalline phases are observed by X‐ray diffraction (XRD). A metastable amorphous phase formed during dynamic cycling and which structurally relaxes to the equilibrium crystalline phases over a time scale of about 10 min after cessation of charging/discharging current is consistent with the experimental observations.  相似文献   

4.
Zinc (Zn) is essential for all life forms, including humans. It is estimated that around two billion people are deficient in their Zn intake. Human dietary Zn intake relies heavily on plants, which in many developing countries consists mainly of cereals. The inner part of cereal grain, the endosperm, is the part that is eaten after milling but contains only a quarter of the total grain Zn. Here, we present results demonstrating that endosperm Zn content can be enhanced through expression of a transporter responsible for vacuolar Zn accumulation in cereals. The barley (Hordeum vulgare) vacuolar Zn transporter HvMTP1 was expressed under the control of the endosperm‐specific D‐hordein promoter. Transformed plants exhibited no significant change in growth but had higher total grain Zn concentration, as measured by ICP‐OES, compared to parental controls. Compared with Zn, transformants had smaller increases in concentrations of Cu and Mn but not Fe. Staining grain cross sections with the Zn‐specific stain DTZ revealed a significant enhancement of Zn accumulation in the endosperm of two of three transformed lines, a result confirmed by ICP‐OES in the endosperm of dissected grain. Synchrotron X‐ray fluorescence analysis of longitudinal grain sections demonstrated a redistribution of grain Zn from aleurone to endosperm. We argue that this proof‐of‐principle study provides the basis of a strategy for biofortification of cereal endosperm with Zn.  相似文献   

5.
Constructing highly active electrocatalysts with superior stability at low cost is a must, and vital for the large‐scale application of rechargeable Zn–air batteries. Herein, a series of bifunctional composites with excellent electrochemical activity and durability based on platinum with the perovskite Sr(Co0.8Fe0.2)0.95P0.05O3?δ (SCFP) are synthesized via a facile but effective strategy. The optimal sample Pt‐SCFP/C‐12 exhibits outstanding bifunctional activity for the oxygen reduction reaction and oxygen evolution reaction with a potential difference of 0.73 V. Remarkably, the Zn–air battery based on this catalyst shows an initial discharge and charge potential of 1.25 and 2.02 V at 5 mA cm?2, accompanied by an excellent cycling stability. X‐ray photoelectron spectroscopy, X‐ray absorption near‐edge structure, and extended X‐ray absorption fine structure experiments demonstrate that the superior performance is due to the strong electronic interaction between Pt and SCFP that arises as a result of the rapid electron transfer via the Pt? O? Co bonds as well as the higher concentration of surface oxygen vacancies. Meanwhile, the spillover effect between Pt and SCFP also can increase more active sites via lowering energy barrier and change the rate‐determining step on the catalysts surface. Undoubtedly, this work provides an efficient approach for developing low‐cost and highly active catalysts for wider application of electrochemical energy devices.  相似文献   

6.
Melanin within melanosomes exists as eumelanin or pheomelanin. Distributions of these melanins have been studied extensively within tissues, but less often within individual melanosomes. Here, we apply X‐ray fluorescence analysis with synchrotron radiation to survey the nanoscale distribution of metals within purified melanosomes of mice. The study allows a discovery‐based characterization of melanosomal metals, and, because Cu is specifically associated with eumelanin, a hypothesis‐based test of the ‘casing model’ predicting that melanosomes contain a pheomelanin core surrounded by a eumelanin shell. Analysis of Cu, Ca, and Zn shows variable concentrations and distributions, with Ca/Zn highly correlated, and at least three discrete patterns for the distribution of Cu vs. Ca/Zn in different melanosomes – including one with a Cu‐rich shell surrounding a Ca/Zn‐rich core. Thus, the results support predictions of the casing model, but also suggest that in at least some tissues and genetic contexts, other arrangements of melanin may co‐exist.  相似文献   

7.
Analysis of rodent brains with X‐ray fluorescence (XRF) microscopy combined with immunohistochemistry allowed us to demonstrate that local Cu concentrations are thousands of times higher in the glia of the subventricular zone (SVZ) than in other cells. Using XRF microscopy with subcellular resolution and intracellular X‐ray absorption spectroscopy we determined the copper (I) oxidation state and the sulfur ligand environment. Cu K‐edge X‐ray absorption near edge spectroscopy is consistent with Cu being bound as a multimetallic Cu‐S cluster similar to one present in Cu‐metallothionein. Analysis of age‐related changes show that Cu content in astrocytes of the SVZ increases fourfold from 3 weeks to 9 months, while Cu concentration in other brain areas remain essentially constant. This increase in Cu correlates with a decrease in adult neurogenesis assessed using the Ki67 marker (both, however, can be age‐related effects). We demonstrate that the Cu distribution and age‐related concentration changes in the brain are highly cell specific.  相似文献   

8.
The zooxanthellate dendrophylliid coral, Turbinaria peltata (Scleractinia), exhibit various growth forms that increase the photoreception area through the development of coenosteum skeletons. Because it is difficult to make detailed observations of the internal structures, we visualized inner skeletal structures using nondestructive microfocus X‐ray computed tomography (CT) imaging. After removal of the coenosteum skeletons from the X‐ray CT images, three‐dimensional 3D‐models were reconstructed for individual corallites. Regular budding was observed from the 3D‐model and cross‐sectional images as follows: 1) lateral corallites occurred only near the two primary septa on one side, apart from a directive primary septum with distinct polarity; 2) the budding occurred upward at acute angles; and 3) these regular structures and polarity were repeated throughout growth with every generation. Even in zooxanthellate dendrophylliids, the same budding modes as observed in azooxanthellate equivalents control the colonial growth. These characteristics provide clues for understanding the mechanisms that regulate the shapes of modular marine organisms. J. Morphol. 276:1100–1108, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
In this study, we used rat animal model to compare the efficiency of indocyanine green (ICG)‐assisted dental near‐infrared fluorescence imaging with X‐ray imaging, and we optimized the imaging window for both unerupted and erupted molars. The results show that the morphology of the dental structures was observed clearly from ICG‐assisted dental images (especially through the endoscope). A better image contrast was easily acquired at the short imaging windows (<10 minutes) for unerupted and erupted molars. For unerupted molars, there is another optimized imaging window (48‐96 hours) with a prominent glow‐in‐the‐dark effect: only the molars remain bright. This study also revealed that the laser ablation of dental follicles can disrupt the molar development, and our method is able to efficiently detect laser‐treated molars and acquire the precise morphology. Thus, ICG‐assisted dental imaging has the potential to be a safer and more efficient imaging modality for the real‐time diagnosis of dental diseases.  相似文献   

10.
Oxalate‐producing plants accumulate calcium oxalate crystals (CaOx(c)) in the range of 3–80% w/w of their dry weight, reducing calcium (Ca) bioavailability. The calcium oxalate deficient 5 (cod5) mutant of Medicago truncatula has been previously shown to contain similar Ca concentrations to wild‐type (WT) plants, but lower oxalate and CaOx(c) concentrations. We imaged the Ca distribution in WT and cod5 leaflets via synchrotron X–ray fluorescence mapping (SXRF). We observed a difference in the Ca distribution between cod5 and WT leaflets, manifested as an abundance of Ca in the interveinal areas and a lack of Ca along the secondary veins in cod5, i.e. the opposite of what is observed in WT. X–ray microdiffraction (μXRD) of M. truncatula leaves confirmed that crystalline CaOx(c) (whewellite; CaC2O4·H2O) was present in the WT only, in cells sheathing the secondary veins. Together with μXRD, microbeam Ca K–edge X–ray absorption near‐edge structure spectroscopy (μXANES) indicated that, among the forms of CaOx, i.e. crystalline or amorphous, only amorphous CaOx was present in cod5. These results demonstrate that deletion of COD5 changes both Ca localization and the form of CaOx within leaflets.  相似文献   

11.
Certain protein‐design calculations involve using an experimentally determined high‐resolution structure as a template to identify new sequences that can adopt the same fold. This approach has led to the successful design of many novel, well‐folded, native‐like proteins. Although any atomic‐resolution structure can serve as a template in such calculations, most successful designs have used high‐resolution crystal structures. Because there are many proteins for which crystal structures are not available, it is of interest whether nuclear magnetic resonance (NMR) templates are also appropriate. We have analyzed differences between using X‐ray and NMR templates in side‐chain repacking and design calculations. We assembled a database of 29 proteins for which both a high‐resolution X‐ray structure and an ensemble of NMR structures are available. Using these pairs, we compared the rotamericity, χ1‐angle recovery, and native‐sequence recovery of X‐ray and NMR templates. We carried out design using RosettaDesign on both types of templates, and compared the energies and packing qualities of the resulting structures. Overall, the X‐ray structures were better templates for use with Rosetta. However, for ~20% of proteins, a member of the reported NMR ensemble gave rise to designs with similar properties. Re‐evaluating RosettaDesign structures with other energy functions indicated much smaller differences between the two types of templates. Ultimately, experiments are required to confirm the utility of particular X‐ray and NMR templates. But our data suggest that the lack of a high‐resolution X‐ray structure should not preclude attempts at computational design if an NMR ensemble is available. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
X‐ray‐induced luminescence computed tomography (XLCT) is an emerging molecular imaging. Challenges in improving spatial resolution and reducing the scan time in a whole‐body field of view (FOV) still remain for practical in vivo applications. In this study, we present a novel XLCT technique capable of obtaining three‐dimensional (3D) images from a single snapshot. Specifically, a customed two‐planar‐mirror component is integrated into a cone beam XLCT imaging system to obtain multiple optical views of an object simultaneously. Furthermore, a compressive sensing based algorithm is adopted to improve the efficiency of 3D XLCT image reconstruction. Numerical simulations and experiments were conducted to validate the single snapshot X‐ray‐induced luminescence computed tomography (SS‐XLCT). The results show that the 3D distribution of the nanophosphor targets can be visualized much faster than conventional cone beam XLCT imaging method that was used in our comparisons while maintaining comparable spatial resolution as in conventional XLCT imaging. SS‐XLCT has the potential to harness the power of XLCT for rapid whole‐body in vivo molecular imaging of small animals.  相似文献   

14.
The rice class I chitinase OsChia1b, also referred to as RCC2 or Cht‐2, is composed of an N‐terminal chitin‐binding domain (ChBD) and a C‐terminal catalytic domain (CatD), which are connected by a proline‐ and threonine‐rich linker peptide. Because of the ability to inhibit fungal growth, the OsChia1b gene has been used to produce transgenic plants with enhanced disease resistance. As an initial step toward elucidating the mechanism of hydrolytic action and antifungal activity, the full‐length structure of OsChia1b was analyzed by X‐ray crystallography and small‐angle X‐ray scattering (SAXS). We determined the crystal structure of full‐length OsChia1b at 2.00‐Å resolution, but there are two possibilities for a biological molecule with and without interdomain contacts. The SAXS data showed an extended structure of OsChia1b in solution compared to that in the crystal form. This extension could be caused by the conformational flexibility of the linker. A docking simulation of ChBD with tri‐N‐acetylchitotriose exhibited a similar binding mode to the one observed in the crystal structure of a two‐domain plant lectin complexed with a chitooligosaccharide. A hypothetical model based on the binding mode suggested that ChBD is unsuitable for binding to crystalline α‐chitin, which is a major component of fungal cell walls because of its collisions with the chitin chains on the flat surface of α‐chitin. This model also indicates the difference in the binding specificity of plant and bacterial ChBDs of GH19 chitinases, which contribute to antifungal activity. Proteins 2010. © 2010 Wiley‐Liss,Inc.  相似文献   

15.
Iron (Fe)‐oxidizing bacteria have the potential to produce morphologically unique structures that may be used as biosignatures in geological deposits. One particular example is Mariprofundus ferrooxydans, which produces extracellular twisted ribbon‐like stalks consisting of ferrihydrite, co‐located with organic and inorganic elements. It is currently thought that M. ferrooxydans excrete and co‐precipitate polysaccharides and Fe simultaneously; however, the cellular production of these polysaccharides has yet to be confirmed. Here, we report on a time‐series study that used scanning transmission X‐ray microscopy and C 1s and Ca 2p near‐edge X‐ray adsorption fine structure spectroscopy to investigate production of polysaccharides over the growth cycle of M. ferrooxydans. The production and morphology of twisted iron stalks were consistent with previous observations, but unexpectedly, in the log phase, the carbon content of the stalks was extremely low. It was not until stationary growth phase that a significant component of carbon was detected on the stalks. During the log phase, low levels of carbon, only detectable when the stalks were thin, suggested that M. ferrooxydans produce an extracellular polysaccharide template onto which the Fe precipitates. By stationary phase, the increased carbon association with the stalks was a result of adsorption of organic compounds that were released during osmotic shock post‐stalk production. In the environment, elevated concentrations of DOC could adsorb onto the Fe stalks as well as a number of other elements, for example, Si, P, Ca, which, by preventing chemical interactions between the Fe nanoparticles, will prevent structural deformation during recrystallization and preserve the structure of these filaments in the rock record.  相似文献   

16.

Used in combination, surface analytical techniques can resolve spatial relationships between bacteria and localized corrosion, determine specific corrosion mechanisms and differentiate between abiotic and biotic processes. Confocal laser scanning microscopy and scanning vibrating electrode microscopy were used to demonstrate that marine bacteria and anodic sites are co‐located. Environmental scanning electron microscopy coupled with energy dispersive X‐ray spectros‐copy was used to demonstrate dealloying of nickel from copper: nickel alloys. X‐ray absorption spectroscopy, and transmission electron microscopy equipped with electron energy loss spectrometry were used to determine the speciation of copper associated with corrosion products.  相似文献   

17.
X‐ray radiation is detrimental to human cells and may lead to development of life‐threatening diseases. Cigarette smoke contains about 500 chemicals that include organic and oxidant compounds whereas vitamin C and E (VCE) have scavenger effects on the compounds. We investigated effects of VCE administration on X‐ray‐induced oxidative toxicity in blood of smoker and nonsmoker X‐ray technicians. Twenty technicians and 30 healthy age‐matched subjects control were used in the study. Ten of the X‐ray technicians and 15 of the control were smokers. Blood samples were taken from the control. Oral vitamin C (500 mg) and vitamin E (150 mg) were daily supplemented to the smoker and nonsmoker X‐ray technicians for 5 weeks. Blood samples were taken from the X‐ray technicians after and before 5 weeks. Plasma and erythrocytes lipid peroxidation (LP), reduced glutathione (GSH) levels, erythrocytes glutathione peroxidase (GSH‐Px), and plasma antioxidant vitamin concentrations were investigated in control and X‐ray technicians with smoker and nonsmoker. Plasma and erythrocytes LP levels were higher in the total X‐ray group and smoker X‐ray group than in control and nonsmoker X‐ray group, respectively although the LP level was decreased by the VCE treatment. The plasma vitamin C, vitamin A, vitamin E, and β‐carotene concentrations were lower in the X‐ray group than in control although their concentrations were increased by the treatment. The erythrocytes GSH level and GSH‐Px activity were found to be higher in the treatment group than in the X‐ray group. Plasma GSH level was not found to be different in all group. Reactive oxygen species may play role in the mechanism that has been proposed to explain the biological side effect of X‐ray radiation and smoke. VCE prevents the smoke and X‐ray‐induced oxidative stress to strengthen antioxidant vitamin concentrations in the blood of the technicians. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
X‐ray microtomography (XMT) is a non‐invasive and non‐destructive method that has often been used to study fossils. It allows serial sections to be made as little as few micrometers apart; such a resolution is unachievable for classical serial sectioning; moreover, in contrast to the latter, the specimen is not destroyed. Microtomography can, however, be applied only in cases where differences in X‐ray absorption between the skeleton and its infilling are great. We show that this method may be also applied to tabulate corals. Case studies of blastogeny are based on Silurian (Aulopora, Favosites) and Devonian (Thamnopora) specimens from Poland. We show that the sequence of events in the blastogeny of Aulopora sp. is different from that of ‘Aulopora serpens minor’ from the Devonian of the Holy Cross Mountains and similar to auloporids from the Devonian of England. Blastogeny in Favosites is very similar to that known from the related genera Squameofavosites and Thamnopora. This suggests that members of the genus Aulopora may be more diversified within the genus (as presently understood) than genera within the Favositidae.  相似文献   

19.
Spatially averaged models of root–soil interactions are often used to calculate plant water uptake. Using a combination of X‐ray computed tomography (CT) and image‐based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X‐ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi‐automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image‐based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image‐based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image‐based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system.  相似文献   

20.
Luminescent nanoparticles of Y2O3 doped with europium (Eu) and/or titanium (Ti) were synthesized using modified sol–gel routes. The crystalline cubic phase was confirmed using X‐ray powder diffraction (XRD). Particle morphology and size were evaluated using scanning and transmission electron microscopy. High‐resolution transmission electron microscopy showed that the synthesis method affected the average particle size and the Fourier transform of the images showed the lattice plane distances, indicating that the samples presented high crystallinity degree in accordance with the XRD pattern. The Ti valence was investigated using X‐ray absorption near edge spectroscopy and the tetravalent form was the dominant oxidizing state in the samples, mainly in Eu and Ti co‐doped Y2O3. Optical behaviour was investigated through X‐ray excited optical luminescence and photoluminescence under ultraviolet–visible (UV–vis) and vacuum ultraviolet (VUV) excitation. Results indicated that Eu3+ is the emitting centre in samples doped with only Eu and with both Eu and Ti with the 5D07F2 transition as the most intense, indicating Eu3+ in a noncentrosymmetric site. Finally, in the Eu,Ti‐doped Y2O3 system, Ti3+ (or TiIV) excitation was observed but no Ti emission was present, indicating a very efficient energy transfer process from Ti to Eu3+. These results can aid the development of efficient nanomaterials, activated using UV, VUV, or X‐rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号