首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
实时荧光定量PCR法检测转基因小鼠拷贝数   总被引:9,自引:0,他引:9  
目的利用实时荧光定量PCR法鉴定转基因小鼠外源基因插入拷贝数。方法以TG-CARK转基因首见鼠为研究对象,选取小鼠的高度保守基因Fabpi为内参,利用绝对定量的实时荧光PCR法鉴定转基因小鼠拷贝数,并与传统的Southern blot方法的定量结果进行比较。结果实时定量PCR鉴定的转基因拷贝数与Southernblot法完全一致,三只TG-CARK首见小鼠的拷贝数分别为1,7,45。结论实时定量PCR技术具有高准确性、高稳定性、高通量和低成本的优点,是比传统杂交技术更好的鉴定小鼠转基因拷贝数的方法。  相似文献   

2.
Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants, so transgene copy number analysis is identified as one most important task after obtaining transgenic plants. In this paper, TaqMan real-time PCR was used to estimate the copy number of exogenous MAC12.2 and NPTII genes in transgenic precocious trifoliate orange (Poncirus trifoliata [L.] Raf) in order to overcome the limitations of Southern blot analysis, which is labor-intensive, time-consuming, in considerable needs of DNA, etc. We developed a real-time PCR assay which permitted the determination of the copy number of transgene (MAC12.2 and NPTII), relative to a conserved endogenous gene (PtLTP) in transgenic lines. R value is 0.92 by comparing the results to that of Southern blot analysis, indicating a strong correlation coefficient between TaqMan real-time PCR assay and Southern blot method.  相似文献   

3.
Using real-time PCR to determine transgene copy number in wheat   总被引:1,自引:0,他引:1  
Transgene copy number is usually determined by means of Southern blot analysis which can be time consuming and laborious. In this study, quantitative real-time PCR was developed to determine transgene copy number in transgenic wheat. A conserved wheat housekeeping gene,puroindoline-b, was used as an internal control to calculate transgene copy number. Estimated copy number in transgenic lines using real-time quantitative PCR was correlated with actual copy number based on Southern blot analysis. Real-time PCR can analyze hundreds of samples in a day, making it an efficient method for estimating copy number in transgenic wheat.  相似文献   

4.
We present a simple and rapid method for screening second-generation transgenic rice plants (T1) to identify homozygous plants. The plasmid (pfd11) used for rice transformation contains a partially deleted cytochrome c gene (cyc) for comparing with the endogenous cyc for copy number. After polymerase chain reaction (PCR) amplification of a segment of the cyc in transgenic rice DNA followed by agarose gel electrophoresis, two specific bands are obtained. The upper band represents the endogenous cyc, and the lower band represents the partially deleted cyc in the transgene. The first-generation plants (T0) that harbor a single copy of the transgene are selected based on the fact that the density of the lower band is half as dense as the upper band. Next, only plants harboring a single copy of the transgene are advanced to the second generation (T1). The same PCR procedure is used again, and homozygous T1 plants are easily identified from samples in which the intensity of the two bands is the same.  相似文献   

5.
For the screening of transfer DNA (T-DNA) integration in transgenic plant material, we developed a method based on specific amplification of genomic plant DNA flanking T-DNA borders. This approach is possible because the length of the region flanking T-DNA extremity on a restriction fragment is specific to the integration locus. We have modified an adaptor ligation PCR technique developed for amplification of unknown DNA flanking known sequence. The PCR patterns obtained were specific and reproducible for different plants from a given transgenic line. Furthermore, the number of PCR products obtained could be considered a good estimation of the T-DNA copy number. When compared to Southern blot analysis, the PCR results give valuable complementary information about the complexity of the T-DNA integration pattern and also about the integrity of the T-DNA borders. We describe the applications of this approach to populations of transgenic Arabidopsis thaliana plants.  相似文献   

6.
. Quantitative real-time PCR (qRT-PCR) was adapted to estimate transgene copy number in transgenic maize callus and plants. WHISKERS™-derived transgenic callus lines and plants were generated using two different gene constructs. These transgenic materials represented a range of copy number. A 'standard curve' was established by mixing plasmid DNA with non-transgenic genomic maize DNA using a calculated ratio of target gene to host genome size. 'Estimated' copy number in the callus lines and plants using qRT-PCR was correlated with the 'actual' copy number based on Southern blot analysis. The results indicated that there was a significant correlation between the two methods with both gene constructs. Thus, qRT-PCR represents an efficient means of estimating copy number in transgenic maize.  相似文献   

7.
Quantitative real-time polymerase chain reaction (qPCR) has been previously applied to estimate transgene copy number in transgenic plants. However, the results can be erroneous owing to inaccurate estimation of PCR efficiency. Here, a novel qPCR approach, named standard addition qPCR (SAQPCR), was devised to accurately determine transgene copy number without the necessity of obtaining PCR efficiency data. The procedures and the mathematical basis for the approach are described. A recombinant plasmid harboring both the internal reference gene and the integrated target gene was constructed to serve as the standard DNA. It was found that addition of suitable amounts of standard DNA to test samples did not affect PCR efficiency, and the guidance for selection of suitable cycle numbers for analysis was established. Samples from six individual T0 tomato (Solanum lycopersicum) plants were analyzed by SAQPCR, and the results confirmed by Southern blot analysis. The approach produced accurate results and required only small amounts of plant tissue. It can be generally applied to analysis of different plants and transgenes. In addition, it can also be applied to zygosity analysis.  相似文献   

8.
9.
《Epigenetics》2013,8(10):1360-1365
Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.  相似文献   

10.
In transgenic plants, the number of transgene copies can greatly influence the level of expression and genetic stability of the target gene. Transgene copy numbers are estimated by Southern blot analysis, which is laborious and time-consuming, requires relatively large amounts of plant materials, and may involve hazardous radioisotopes. Here we report the development of a sensitive, convenient real-time PCR technique for estimating the number of transgene copies in transgenic rapeseed. This system uses TaqMan quantitative real-time PCR and comparison with a novel, confirmed single-copy endogenous reference gene, high-mobile-group protein I/Y (HMG I/Y), to determine the numbers of copies of exogenous β-glucuronidase (GUS) and neomycin phosphotransferase II (nptII) genes. TheGUS andnptII copy numbers in primary transformants (T0) were calculated by comparing threshold cycle (C T) values of theGUS andnptII genes with those of the internal standard,HMG I/Y. This method is more convenient and accurate than Southern blotting because the number of copies of the exogenous gene could be directly deduced by comparing itsC T value to that of the single-copy endogenous gene in each sample. Unlike other similar procedures of real-time PCR assay, this method does not require identical amplification efficiencies between the PCR systems for target gene and endogenous reference gene, which can avoid the bias that may result from slight variations in amplification efficiencies between PCR systems of the target and endogenous reference genes.  相似文献   

11.
Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.  相似文献   

12.
为了获得单个T-DNA插入拷贝的植株, 我们建立了一套利用Inverse PCR(IPCR)快速检测转基因水稻中T-DNA拷贝数的方法。用IPCR的方法可以扩增出与已知T-DNA序列相邻的水稻基因组DNA未知序列,由此推测转基因水稻植株中T-DNA的拷贝数。我们共对15个转化株系20棵不同植株的DNA进行了IPCR检测。其中12株表现为T-DNA单拷贝插入,3株为双拷贝插入,1株为三拷贝插入。另外4株未检测到T-DNA插入拷贝。IPCR分析结果经过Southern杂交和测序的验证。  相似文献   

13.
In an analysis of 339 independent T 0 transgenic rice lines generated by Agrobacterium-mediated transformation, albino plants appeared in the T 1 generation in two single-copy transgenic lines, O54 and O36 and in one double-copy transgenic line, C18. While the T 0 plants of these three lines were green, albino and green plants emerged in a 1:3 ratio in the T 1 generation. The albino phenotype segregated as a monogenic recessive trait. Southern blot analysis of the green and albino plants in the T 1 generation confirmed that the albino trait and the T-DNA insertion events were unlinked. Segregation of the albino trait from the transgenic trait in the lines O54 and O36 was confirmed in T 2 and T 3 generations, respectively. Homozygous transgenic plants free from the albino trait were also identified. In the double-copy transgenic line C18, we genetically separated the two transgenic loci, out-segregated the albino locus from both transgene loci, and identified homozygous plants for each of the transgenic events by Southern blot analysis in the T 1 generation itself. Thus, we demonstrate that when an albino trait appears in the T 1 generation and is unlinked to a transgene locus, the albino locus can be segregated from the transgene locus and homozygous transgenic lines free from albinos can be established.  相似文献   

14.
Aifu Yang  Qiao Su  Lijia An 《Planta》2009,229(4):793-801
The presence of selectable marker genes and vector backbone sequences has affected the safe assessment of transgenic plants. In this study, the ovary-drip method for directly generating vector- and selectable marker-free transgenic plants was described, by which maize was transformed with a linear GFP cassette (Ubi-GFP-nos). The key features of this method center on the complete removal of the styles and the subsequent application of a DNA solution directly to the ovaries. The movement of the exogenous DNA was monitored using fluorescein isothiocyanate-labeled DNA, which showed that the time taken by the exogenous DNA to enter the ovaries was shortened compared to that of the pollen-tube pathway. This led to an improved transformation frequency of 3.38% compared to 0.86% for the pollen-tube pathway as determined by PCR analysis. The use of 0.05% surfactant Silwet L-77 + 5% sucrose as a transformation solution further increased the transformation frequency to 6.47%. Southern blot analysis showed that the transgenic plants had low transgene copy number and simple integration pattern. Green fluorescence was observed in roots and immature embryos of transgenic plants by fluorescence microscopy. Progeny analysis showed that GFP insertions were inherited in T1 generation. The ovary-drip method would become a favorable choice for directly generating vector- and marker-free transgenic maize expressing functional genes of agronomic interest.  相似文献   

15.
Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker‐free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium‐mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker‐free transgenic wheat plants from various commercial Chinese varieties and their F1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T‐DNA regions. The average co‐integration frequency of the gus and the bar genes located on the two independent T‐DNA regions was 49.0% in T0 plants. We further found that the efficiency of generating marker‐free plants was related to the number of bar gene copies integrated in the genome. Marker‐free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T1 positive plants, but the gus gene was never found to be silenced in T1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants.  相似文献   

16.
17.
The integration, expression, and stability of the Respiratory Syncytial Virus (RSV)-F protein was analyzed in a T3 generation of transgenic cherry tomato, Solanum lycopersicum L. cv. Swifty Belle, plants. Expression of the RSV-F antigen, under the control of the fruit-specific promoter E-8, was investigated in T3 plants derived from a transgenic line, identified as #120. Transgene integration of the RSV-F gene in the T3 generation was initially determined by polymerase chain reaction (PCR). PCR analysis from line 120-7-2 revealed that all T3 plants were homozygous for the transgene; whereas, line 120-6-4 showed segregation for the transgene. Enzyme-linked immunosorbent assay (ELISA) was used to quantify levels of RSV-F protein in these plants, and protein levels ranged from 0–22 μg/g of fresh weight, with an average of ~3 μg/g fresh weight. Southern blot analysis of the highest expressing plants revealed presence of a single copy of the RSV-F transgene in these plants.  相似文献   

18.
19.
A TaqMan quantitative real-time PCR detection system was developed to examine transgene copy number in cotton. GhUBC1, a gene validated to be present as a single copy per haploid Gossypium hirsutum genome, was used as the endogenous reference to estimate copy number of GFP and selection marker NPTII in 28 T0 plants. This system was found to be more accurate than genomic Southern blot hybridization and could effectively tell homozygotes from heterozygotes in a T1 transgenic cotton population. Therefore it is suitable for efficient and cost effective early screening of transgenic seedlings and identifying transgene homozygotes in segregation populations.  相似文献   

20.
农杆菌介导的玉米遗传转化   总被引:54,自引:0,他引:54  
Several maize inbreds were transformed with Agrobacterium tumefaciens EHA101 (pGIH). Transgenic maize plants were obtained. Frequency of transformation of maize inbred Suyu No. 1 can reach 8.1%. Results of PCR and Southern blot analysis proved that T-DNA was stably integrated into the genome of maize. Staining with X-gluc confirmed the expression of GUS gene in maize cells. The band amplified by inverse PCR showed that the copy number of transgene in three transformants was single. After long term of subculture, some hygromycin resistant calli lost their regeneration ability. Although Southern blot probed the integration of gusA gene in their genome, GUS activity cannot be detected in those calli. Southern blot analysis of HpaII digest DNA showed that transgenic gusA gene was highly methylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号