首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Stone cells are a physical defence of conifers against stem feeding insects such as weevils and bark beetles. In Sitka spruce, abundance of stone cells in the cortex of apical shoot tips is associated with resistance to white pine weevil. However, the mode of action by which stone cells interfere with growth and development of weevil larvae is unknown. We developed a bioassay system for testing potential effects of stone cells, which were isolated from resistant trees, on weevil larvae. Bioassays using artificial diet and controlled amounts of stone cells focused on physical defence. We evaluated the effects of stone cells on establishment of neonate larvae, mandible wear and changes in relative growth rates of third instar larvae. Establishment of neonates and relative growth rates of third instars were significantly reduced by stone cells. Stone cells appeared to be indigestible by weevil larvae. Our results suggest that stone cells affect weevil establishment and development by forming a physical feeding barrier against neonate larvae at the site of oviposition, and by reducing access to nutrients in the cortex of resistant trees, which contain an abundance of stone cells in place of a more nutrient rich tissue in susceptible trees.  相似文献   

2.
Insect pests are part of natural forest ecosystems contributing to forest rejuvenation but can also cause ecological disturbance and economic losses that are expected to increase with climate change. The white pine or spruce weevil (Pissodes strobi) is a pest of conifer forests in North America. Weevil–host interactions with various spruce (Picea) species have been explored as a genomic and molecular reference system for conifer defence against insects. Interactions occur in two major phases of the insect life cycle. In the exophase, adult weevils are free‐moving and display behaviour of host selection for oviposition that is affected by host traits. In the endophase, insects live within the host where mobility and development from eggs to young adults are affected by a complex system of host defences. Genetic resistance exists in several spruce species and involves synergism of constitutive and induced chemical and physical defences that comprise the conifer defence syndrome. Here, we review conifer defences that disrupt the weevil life cycle and mechanisms by which trees resist weevil attack. We highlight molecular and genomic aspects and a possible role for the weevil microbiome. Knowledge of this conifer defence system is supporting forest health strategies and tree breeding for insect resistance.  相似文献   

3.
As fundamentally different as phytopathogenic microbes and herbivorous insects are, they enjoy plant‐based diets. Hence, they encounter similar challenges to acquire nutrients. Both microbes and beetles possess polygalacturonases (PGs) that hydrolyze the plant cell wall polysaccharide pectin. Countering these threats, plant proteins inhibit PGs of microbes, thereby lowering their infection rate. Whether PG‐inhibiting proteins (PGIPs) play a role in defense against herbivorous beetles is unknown. To investigate the significance of PGIPs in insect–plant interactions, feeding assays with the leaf beetle Phaedon cochleariae on Arabidopsis thaliana pgip mutants were performed. Fitness was increased when larvae were fed on mutant plants compared to wild‐type plants. Moreover, PG activity was higher, although PG genes were downregulated in larvae fed on PGIP‐deficient plants, strongly suggesting that PGIPs impair PG activity. As low PG activity resulted in delayed larval growth, our data provide the first in vivo correlative evidence that PGIPs act as defense against insects.  相似文献   

4.
In previous publications, we reported the benefits of a high‐aspect rotating‐wall vessel (HARV) over conventional bioreactors for insect‐cell cultivation in terms of reduced medium requirements and enhanced longevity. To more fully understand the effects that HARV cultivation has on longevity, the present study characterizes the mode and kinetics of Spodoptera frugiperda cell death in this quiescent environment relative to a shaker‐flask control. Data from flow cytometry and fluorescence microscopy show a greater accumulation of apoptotic cells in the HARV culture, by a factor of at least 2 at the end of the cultivation period. We present a kinetic model of growth and bimodal cell death. The model is unique for including both apoptosis and necrosis, and further, transition steps within the two pathways. Kinetic constants reveal that total cell death is reduced in the HARV and the accumulation of apoptotic cells in this vessel results from reduced depletion by lysis and secondary necrosis. The ratio of early apoptotic to necrotic cell formation is found independent of cultivation conditions. In the model, apoptosis is only well represented by an integral term, which may indicate its dependence on accumulation of some factor over time; in contrast, necrosis is adequately represented with a first‐order term. Cell‐cycle analysis shows the percent of tetraploid cells gradually decreases during cultivation in both vessels. For example, between 90% and 70% viability, tetraploid cells in the HARV drop from 43 ± 1% to 24 ± 4%. The data suggests the tetraploid phase as the likely origin for apoptosis in our cultures. Possible mechanisms for these changes in bimodal cell death are discussed, including hydrodynamic forces, cell–cell interactions, waste accumulation, and mass transport. These studies may benefit insect‐cell cultivation by increasing our understanding of cell death in culture and providing a means for further enhancing culture longevity. © 1999 John Wiley & Sons, Inc. Biotechnol Bioeng 64: 14–26, 1999.  相似文献   

5.
Regulation of assimilation and senescence by the fruit in monocarpic plants   总被引:1,自引:0,他引:1  
Intercellular acidic isoperoxidases (EC 1.11.1.7) isolated from exponentially growing lupin ( Lupinus albus . L. cv. multolupa) hypocotyls are under the control of exogenously applied auxins. Application of auxins leads to a short-term reduction in the level of free intercellular peroxidases, and this effect is associated with a binding of these free peroxidases to the cell walls, probably mediated by an acidification of the cell wall. The ratio of free intercellular peroxidases to the total intercellular peroxidase activity, varies along the axis of exponentially growing hypocotyls. It has a V-shaped distribution with the minimum value in the elongation III-zone, where high levels of auxins have previously been implied in differentiation. This minimum value coincides spatially with the first signs of cell wall thickening in the hypocotyl cells and, paradoxically, it is out of phase with respect to the maximal cell elongation. On the other hand, the ratio of free intercellular peroxidases reaches its maximal values in both the most undiffercntiated phloem cells and the differentiated xylem cells. High levels of free intercellular peroxidase activity in phloem cells are hard to explain, since phloem cell walls remain unlignified during almost all stages of differentiation. However, association of free intercellular peroxidase activity with xylem cells is clearly associated with the lignification of the xylem cell walls. The physiological significance of the binding vs release of intercellular peroxidase is discussed in relation to the catalytic properties and stability at acidic pH of both the bound and free forms of this enzyme.  相似文献   

6.
Alkaline hydrolysis liberated ferulic and diferulic acid from polysaccharides of the Avena coleoptile ( Avena sativa L. cv. Victory I) cell walls. The amount of the two phenolic acids bound to cell walls increased substantially at day 4–5 after sowing, when the growth rate of the coleoptile started to decrease. The level of these acids was almost constant from the tip to base in 3-day-old coleoptiles, but increased toward the basal zone in 4- and 5-day-old ones. The ratio of diferulic acid to ferulic acid was almost constant irrespective of coleoptile age and zone. An increase in the amount of ferulic and diferulic acids bound to cell wall polysaccharides correlated with a decrease in extensibility and with an increase in minimum stress-relaxation time and relaxation rate of the cell wall. The level of lignin in the cellulose fraction increased as coleoptiles aged, but this increase did not correlate with changes in mechanical properties of the cell walls. These results suggest that ferulic acid, ester-linked to cell wall polysaccharides, is oxidized to give diferulic acid, which makes the cell wall mechanically rigid by cross-linking matrix polysaccharides and results in limited cell extension growth. In addition, it is probable that the step of feruloylation of cell wall polysaccharides is rate-limiting in the formation of in-termolecular bridges by diferulic acid in Avena coleoptile cell walls.  相似文献   

7.
Understanding the evolutionary dynamics underlying herbivorous insect mega‐diversity requires investigating the ability of insects to shift and adapt to different host plants. Feeding experiments with nine related stick insect species revealed that insects retain the ability to use ancestral host plants after shifting to novel hosts, with host plant shifts generating fundamental feeding niche expansions. These expansions were, however, not accompanied by expansions of the realised feeding niches, as species on novel hosts are generally ecologically specialised. For shifts from angiosperm to chemically challenging conifer hosts, generalist fundamental feeding niches even evolved jointly with strong host plant specialisation, indicating that host plant specialisation is not driven by constraints imposed by plant chemistry. By coupling analyses of plant chemical compounds, fundamental and ecological feeding niches in multiple insect species, we provide novel insights into the evolutionary dynamics of host range expansion and contraction in herbivorous insects.  相似文献   

8.
Depth profiles of C, Na, Mg, Al, K and Ca were performed in the cuticle and wall of epidermal cells of flax hypocotyls, with current densities ranging from 0.2 to 1 pA μm?2. The crater bottoms were never flat, but exhibited fairly complex, filiform or alveolar structures. The profiles of K, Ca and Mg were reasonably parallel to one another. The Ca/Mg signal ratio was in the magnitude of 3.5 in the cuticle. The Na profile, except perhaps in the cuticle, did not parallel the K, Ca and Mg profiles, but rather paralleled the C profile. At the outset of the depth profiles, ie in the cuticle, the intensity of the Na signal, although fairly variable, was usually above that of K; then there was an abrupt decrease of the Na signal, possibly at the border of the cuticle and of the wall. The Al signal usually began to increase, thus revealing the occurrence of perforations through the epidermis sample, after 80 min sputtering at a current density of 1 pA μm?2; the mean sputtering rate was thus estimated to be in the order of 1 μm h?1.  相似文献   

9.

Background

Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases.

Scope and Conclusions

This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.  相似文献   

10.
The cell wall provides external support of the plant cells, while the cytoskeletons including the microtubules and the actin filaments constitute an internal framework. The cytoskeletons contribute to the cell wall biosynthesis by spatially and temporarily regulating the transportation and deposition of cell wall components. This tight control is achieved by the dynamic behavior of the cytoskeletons, but also through the tethering of these structures to the plasma membrane. This tethering may also extend beyond the plasma membrane and impact on the cell wall, possibly in the form of a feedback loop. In this review, we discuss the linking components between the cytoskeletons and the plasma membrane, and/or the cell wall. We also discuss the prospective roles of these components in cell wall biosynthesis and modifications, and aim to provide a platform for further studies in this field.  相似文献   

11.
12.
Ethylene regulation of cell division in the vascular cambium and cell wall formation was studied in hypocotyls of Norway spruce ( Picea abies [L.] Karst.) seedlings. Cuttings from 6-week-old seedlings were placed in water culture to which compounds affecting the synthesis and action of ethylene were added. After a 3-week treatment period, growth, ethylene production, morphology and cell wall composition of the hypocotyls were determined. Addition of high concentrations of the potent ethylene releasing agent 2-chloroethylphosphonic acid (ethrel), which increased ethylene emission by more than twice compared to control plants, inhibited the expansion of xylem cells while stimulating the incorporation of cell wall material, especially cellulose. Addition of small amounts of ethrel, which slightly stimulated ethylene emission, led to increases in the size of xylem cells, the amount of phloem tissue and the number of intercellular spaces in the cortex, and thus to increased hypocotyl diameter. However, no significant change in cell wall composition was detected. When ethylene production was decreased by adding Co2+ to the nutrient solution, differentiation of new xylem was disturbed, but the rate of cell division was not affected. Although the incorporation of cell wall material was inhibited, the proportions of lignin and cellulose in the wall appeared to remain unchanged. Silver ions stimulated the expansion of both xylem and cortex cells, but had no significant effect on cell wall formation. We conclude that ethylene has a role in regulating the incorporation of wall carbohydrates.  相似文献   

13.
Numerous evolutionary innovations were required to enable freshwater green algae to colonize terrestrial habitats and thereby initiate the evolution of land plants (embryophytes). These adaptations probably included changes in cell-wall composition and architecture that were to become essential for embryophyte development and radiation. However, it is not known to what extent the polymers that are characteristic of embryophyte cell walls, including pectins, hemicelluloses, glycoproteins and lignin, evolved in response to the demands of the terrestrial environment or whether they pre-existed in their algal ancestors. Here we show that members of the advanced charophycean green algae (CGA), including the Charales, Coleochaetales and Zygnematales, but not basal CGA (Klebsormidiales and Chlorokybales), have cell walls that are comparable in several respects to the primary walls of embryophytes. Moreover, we provide both chemical and immunocytochemical evidence that selected Coleochaete species have cell walls that contain small amounts of lignin or lignin-like polymers derived from radical coupling of hydroxycinnamyl alcohols. Thus, the ability to synthesize many of the components that characterize extant embryophyte walls evolved during divergence within CGA. Our study provides new insight into the evolutionary window during which the structurally complex walls of embryophytes originated, and the significance of the advanced CGA during these events.  相似文献   

14.
Li W  Zhong S  Li G  Li Q  Mao B  Deng Y  Zhang H  Zeng L  Song F  He Z 《Cell research》2011,21(5):835-848
Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including innate immune responses in plants. However, the mechanism of the E3 ligase involvement in plant innate immunity is unclear. We report that a rice gene, OsBBI1, encoding a RING finger protein with E3 ligase activity, mediates broad-spectrum disease resistance. The expression of OsBBI1 was induced by rice blast fungus Magnaporthe oryzae, as well as chemical inducers, benzothiadiazole and salicylic acid. Biochemical analysis revealed that OsBBI1 protein possesses E3 ubiquitin ligase activity in vitro. Genetic analysis revealed that the loss of OsBBI1 function in a Tos17-insertion line increased susceptibility, while the overexpression of OsBBI1 in transgenic plants conferred enhanced resistance to multiple races of M. oryzae. This indicates that OsBBI1 modulates broad-spectrum resistance against the blast fungus. The OsBBI1-overexpressing plants showed higher levels of H(2)O(2) accumulation in cells and higher levels of phenolic compounds and cross-linking of proteins in cell walls at infection sites by M. oryzae compared with wild-type (WT) plants. The cell walls were thicker in the OsBBI1-overexpressing plants and thinner in the mutant plants than in the WT plants. Our results suggest that OsBBI1 modulates broad-spectrum resistance to blast fungus by modifying cell wall defence responses. The functional characterization of OsBBI1 provides insight into the E3 ligase-mediated innate immunity, and a practical tool for constructing broad-spectrum resistance against the most destructive disease in rice.  相似文献   

15.
The composition and concentrations of cell wall polysaccharides and phenolic compounds were analyzed in mature stems of several Miscanthus genotypes, in comparison with switchgrass and reed (Arundo donax), and biomass characteristics were correlated with cell wall saccharification efficiency. The highest cellulose content was found in cell walls of M. sinensis‘Grosse Fontaine’ (55%) and in A. donax (47%) and lowest (about 32%) in M. sinensis‘Adagio’. There was little variation in lignin contents across M. sinensis samples (all about 22–24% of cell wall), however, Miscanthus×giganteus (M × g) cell walls contained about 28% lignin, reed – 23% and switchgrass – 26%. The highest ratios of cellulose/lignin and cellulose/xylan were in M. sinensis‘Grosse Fontaine’ across all samples tested. About the same total content of ester‐bound phenolics was found in different Miscanthus genotypes (23–27 μg/mg cell wall), while reed cell walls contained 17 μg/mg cell wall and switchgrass contained a lower amount of ester‐bound phenolics, about 15 μg/mg cell wall. Coumaric acid was a major phenolic compound ester‐bound to cell walls in plants analyzed and the ratio of coumaric acid/ferulic acid varied from 2.1 to 4.3, with the highest ratio being in M × g samples. Concentration of ether‐bound hydroxycinnamic acids varied greatly (about two‐three‐fold) within Miscanthus genotypes and was also the highest in M × g cell walls, but at a concentration lower than ester‐bound hydroxycinnamic acids. We identified four different forms of diferulic acid esters bound to Miscanthus cell walls and their concentration and proportion varied in genotypes analyzed with the 5‐5‐coupled dimer being the predominant type of diferulate in most samples tested. The contents of lignin and ether‐bound phenolics in the cell wall were the major determinants of the biomass degradation caused by enzymatic hydrolysis.  相似文献   

16.
Lignin engineering is a promising tool to reduce the energy input and the need of chemical pre‐treatments for the efficient conversion of plant biomass into fermentable sugars for downstream applications. At the same time, lignin engineering can offer new insight into the structure–function relationships of plant cell walls by combined mechanical, structural and chemical analyses. Here, this comprehensive approach was applied to poplar trees (Populus tremula × Populus alba) downregulated for CINNAMYL ALCOHOL DEHYDROGENASE (CAD) in order to gain insight into the impact of lignin reduction on mechanical properties. The downregulation of CAD resulted in a significant decrease in both elastic modulus and yield stress. As wood density and cellulose microfibril angle (MFA) did not show any significant differences between the wild type and the transgenic lines, these structural features could be excluded as influencing factors. Fourier transform infrared spectroscopy (FTIR) and Raman imaging were performed to elucidate changes in the chemical composition directly on the mechanically tested tissue sections. Lignin content was identified as a mechanically relevant factor, as a correlation with a coefficient of determination (r²) of 0.65 between lignin absorbance (as an indicator of lignin content) and tensile stiffness was found. A comparison of the present results with those of previous investigations shows that the mechanical impact of lignin alteration under tensile stress depends on certain structural conditions, such as a high cellulose MFA, which emphasizes the complex relationship between the chemistry and mechanical properties in plant cell walls.  相似文献   

17.
Most plant–pathogen interactions do not result in pathogenesis because of pre‐formed defensive plant barriers or pathogen‐triggered activation of effective plant immune responses. The mounting of defence reactions is accompanied by a profound modulation of plant metabolism. Common metabolic changes are the repression of photosynthesis, the increase in heterotrophic metabolism and the synthesis of secondary metabolites. This enhanced metabolic activity is accompanied by the reduced export of sucrose or enhanced import of hexoses at the site of infection, which is mediated by an induced activity of cell‐wall invertase (Cw‐Inv). Cw‐Inv cleaves sucrose, the major transport sugar in plants, irreversibly yielding glucose and fructose, which can be taken up by plant cells via hexose transporters. These hexose sugars not only function in metabolism, but also act as signalling molecules. The picture of Cw‐Inv regulation in plant–pathogen interactions has recently been broadened and is discussed in this review. An interesting emerging feature is the link between Cw‐Inv and the circadian clock and new modes of Cw‐Inv regulation at the post‐translational level.  相似文献   

18.
《Current biology : CB》2023,33(3):498-506.e6
  1. Download : Download high-res image (175KB)
  2. Download : Download full-size image
  相似文献   

19.
20.
Summary— Arabinoxylans were localised by immunocytochemistry using polyclonal antibodies in the cell walls of the apical internode of maize after degradation in the rumen. In order to understand the significance of arabinoxylan in digestibility property, two lines of maize differing in digestibility were used. Wide variations in the intensity of labelling were observed in the four tissues studied (sclerenchyma, fibres, xylem and parenchyma) from the first hours of incubation in the rumen. Incubation time in the rumen greatly influences the intensity of labelling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号