共查询到20条相似文献,搜索用时 15 毫秒
1.
An autophosphorylation site database for leucine‐rich repeat receptor‐like kinases in Arabidopsis thaliana 下载免费PDF全文
Srijeet K. Mitra Ruiqiang Chen Murali Dhandaydham Xiaofeng Wang Robert Kevin Blackburn Uma Kota Michael B. Goshe Daniel Schwartz Steven C. Huber Steven D. Clouse 《The Plant journal : for cell and molecular biology》2015,82(6):1042-1060
Leucine‐rich repeat receptor‐like kinases (LRR RLKs) form a large family of plant signaling proteins consisting of an extracellular domain connected by a single‐pass transmembrane sequence to a cytoplasmic kinase domain. Autophosphorylation on specific Ser and/or Thr residues in the cytoplasmic domain is often critical for the activation of several LRR RLK family members with proven functional roles in plant growth regulation, morphogenesis, disease resistance, and stress responses. While identification and functional characterization of in vivo phosphorylation sites is ultimately required for a full understanding of LRR RLK biology and function, bacterial expression of recombinant LRR RLK cytoplasmic catalytic domains for identification of in vitro autophosphorylation sites provides a useful resource for further targeted identification and functional analysis of in vivo sites. In this study we employed high‐throughput cloning and a variety of mass spectrometry approaches to generate an autophosphorylation site database representative of more than 30% of the approximately 223 LRR RLKs in Arabidopsis thaliana. We used His‐tagged constructs of complete cytoplasmic domains to identify a total of 592 phosphorylation events across 73 LRR RLKs, with 497 sites uniquely assigned to specific Ser (268 sites) or Thr (229 sites) residues in 68 LRR RLKs. Multiple autophosphorylation sites per LRR RLK were the norm, with an average of seven sites per cytoplasmic domain, while some proteins showed more than 20 unique autophosphorylation sites. The database was used to analyze trends in the localization of phosphorylation sites across cytoplasmic kinase subdomains and to derive a statistically significant sequence motif for phospho‐Ser autophosphorylation. 相似文献
2.
先天性免疫监视机制的核心是通过模式识别受体(pattern recognition receptors,PRRs)识别病毒分子诱导抗病毒防御,使宿主免受感染。PRRs表达在不同类型细胞的不同细胞区室,包括细胞膜、内体膜、溶酶体膜和胞质。病毒进入细胞区室后将被一个或多个模式识别受体所识别并激活机体的免疫反应。主要对细胞质内模式识别受体视黄酸诱导基因I样受体(retinoic acid-inducible gene I(RIG-I)-like receptors,RLRs)、核苷酸结合寡聚化结构域样受体(nucleotide-binding oligomerization domain(NOD)-like receptors,NLRs)、DEXDc螺旋酶受体(DLRs)及最近发现的DNA模式识别分子——DAI(DNA-dependent activator of interferonregulatory factors)识别病毒核酸并诱导I型干扰素产生的分子机制作一综述。 相似文献
3.
Molecular mechanisms that distinguish self and non-self are fundamental in innate immunity to prevent infections in plants and animals. Recognition of the conserved microbial components triggers immune responses against a broad spectrum of potential pathogens. In Arabidopsis, bacterial flagellin was perceived by a leucine-rich repeat-receptor-like kinase (LRR-RLK) FLS2. Upon flagellin perception, FLS2 forms a complex with another LRR-RLK BAK1. The intracellular signaling events downstream of FLS2/BAK1 receptor complex are still poorly understood. We recently identified a receptor-like cytoplasmic kinase (RLCK) BIK1 that associates with flagellin receptor complex to initiate plant innate immunity. BIK1 is rapidly phosphorylated upon flagellin perception in an FLS2- and BAK1-dependent manner. BAK1 directly phosphorylates BIK1 with an in vitro kinase assay. Plants have evolved a large number of RLCK genes involved in a wide range of biological processes. We provided evidence here that additional RLCKs could also be phosphorylated by flagellin and may play redundant role with BIK1 in plant innate immunity. 相似文献
4.
Paulo José Pereira Lima Teixeira Gustavo Gilson Lacerda Costa Gabriel Lorencini Fiorin Gonçalo Amarante Guimarães Pereira Jorge Maurício Costa Mondego 《Molecular Plant Pathology》2013,14(6):602-609
Members of the pathogenesis‐related protein 1 (PR‐1) family are well‐known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR‐1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor‐like kinases (RLKs). These proteins (TcPR‐1f and TcPR‐1g) were named PR‐1 receptor kinases (PR‐1RKs). Phylogenetic analysis of RLKs and PR‐1 proteins from cacao indicated that PR‐1RKs originated from a fusion between sequences encoding PR‐1 and the kinase domain of a LecRLK (Lectin Receptor‐Like Kinase). Retrotransposition marks surround TcPR‐1f, suggesting that retrotransposition was involved in the origin of PR‐1RKs. Genes with a similar domain architecture to cacao PR‐1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR‐1g expression was up‐regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR‐1RKs during cacao defence responses. We hypothesize that PR‐1RKs transduce a defence signal by interacting with a PR‐1 ligand. 相似文献
5.
The Catharanthus roseus Receptor‐Like Kinase 1‐like (CrRLK1L) family of 17 receptor‐like kinases (RLKs) has been implicated in a variety of signaling pathways in Arabidopsis, ranging from pollen tube (PT) reception and tip growth to hormonal responses. The extracellular domains of these RLKs have malectin‐like domains predicted to bind carbohydrate moieties. Domain swap analysis showed that the extracellular domains of the three members analyzed (FER, ANX1, HERK1) are not interchangeable, suggesting distinct upstream components, such as ligands and/or co‐factors. In contrast, their intercellular domains are functionally equivalent for PT reception, indicating that they have common downstream targets in their signaling pathways. The kinase domain is necessary for FER function, but kinase activity itself is not, indicating that other kinases may be involved in signal transduction during PT reception. 相似文献
6.
ZmSTK1 and ZmSTK2, encoding receptor‐like cytoplasmic kinase,are involved in maize pollen development with additive effect 下载免费PDF全文
Chen Liu Wenjuan Ma Meiming Chen Kuichen Liu Fengchun Cai Guohong Wang Zhengyi Wei Min Jiang Zaochang Liu Ansar Javeed Feng Lin 《Plant biotechnology journal》2018,16(8):1402-1414
Pollen germination and pollen tube growth are important physiological processes of sexual reproduction of plants and also are involved in signal transduction. Our previous study reveals that ZmSTK1 and ZmSTK2 are two receptor‐like cytoplasmic kinases (RLCK) homologs in Zea mays as members of receptor‐like protein kinase (RLK) subfamily, sharing 86% identity at the amino acid level. Here, we report that ZmSTK1 and ZmSTK2, expressed at late stages of pollen development, regulate maize pollen development with additive effect. ZmSTK1 or ZmSTK2 mutation exhibited severe pollen transmission deficiency, which thus influenced pollen fertility. Moreover, the kinase domains of ZmSTKs were cross‐interacted with C‐terminus of enolases detected by co‐immunoprecipitation (Co‐IP) and yeast two‐hybrid system (Y2H), respectively. Further, the detective ZmSTK1 or ZmSTK2 was associated with decreased activity of enolases and also reduced downstream metabolite contents, which enolases are involved in glycolytic pathway, such as phosphoenolpyruvate (PEP), pyruvate, ADP/ATP, starch, glucose, sucrose and fructose. This study reveals that ZmSTK1 and ZmSTK2 regulate maize pollen development and indirectly participate in glycolytic pathway. 相似文献
7.
Daphne Brul Clizia Villano Laura J. Davies Lucie Trd Justine Claverie Marie‐Claire Hloir Annick Chiltz Marielle Adrian Benoît Darblade Pablo Tornero Lena Stransfeld Freddy Boutrot Cyril Zipfel Ian B. Dry Benoit Poinssot 《Plant biotechnology journal》2019,17(4):812-825
Chitin, a major component of fungal cell walls, is a well‐known pathogen‐associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM‐RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM‐RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin‐induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1‐1, ‐2, or ‐3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1‐1 and VvLYK1‐2, but not VvLYK1‐3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide‐induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1‐1 in Atcerk1 restored penetration resistance to the non‐adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1‐1 and VvLYK1‐2 participate in chitin‐ and chitosan‐triggered immunity and that VvLYK1‐1 plays an important role in basal resistance against E. necator. 相似文献
8.
Xiaoyan Cheng Yan Wu Jianping Guo Bo Du Rongzhi Chen Lili Zhu Guangcun He 《The Plant journal : for cell and molecular biology》2013,76(4):687-698
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor‐like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two‐hybrid and co‐immunoprecipitation experiments revealed that OslecRK interacts with an actin‐depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high‐vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice. 相似文献
9.
Rumyana Karlova Sjef Boeren Walter van Dongen Mark Kwaaitaal Jose Aker Jacques Vervoort Sacco de Vries Professor 《Proteomics》2009,9(2):368-379
The Arabidopsis thaliana somatic embryogenesis receptor‐like kinase (SERK) family consists of five leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)‐mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC‐MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C‐terminally located residue Ser‐562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr‐462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP‐tagged SERK1 from plant extracts followed by MS/MS identified Ser‐303, Thr‐337, Thr‐459, Thr‐462, Thr‐463, Thr‐468, and Ser‐612 or Thr‐613 or Tyr‐614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser‐299 and Thr‐462. This suggests both intra‐ and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser‐887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay. 相似文献
10.
Michael W. Lewis Michelle E. Leslie Emilee H. Fulcher Lalitree Darnielle Patrick N. Healy Ji‐Young Youn Sarah J. Liljegren 《The Plant journal : for cell and molecular biology》2010,62(5):817-828
Through a sensitized screen for novel components of pathways regulating organ separation in Arabidopsis flowers, we have found that the leucine‐rich repeat receptor‐like kinase SOMATIC EMBRYOGENESIS RECEPTOR‐LIKE KINASE1 (SERK1) acts as a negative regulator of abscission. Mutations in SERK1 dominantly rescue abscission in flowers without functional NEVERSHED (NEV), an ADP‐ribosylation factor GTPase‐activating protein required for floral organ shedding. We previously reported that the organization of the Golgi apparatus and location of the trans‐Golgi network (TGN) are altered in nev mutant flowers. Disruption of SERK1 restores Golgi structure and the close association of the TGN in nev flowers, suggesting that defects in these organelles may be responsible for the block in abscission. We have also found that the abscission zones of nev serk1 flowers are enlarged compared to wild‐type. A similar phenotype was previously observed in plants constitutively expressing a putative ligand required for organ separation, INFLORESCENCE DEFICIENT IN ABSCISSION (IDA), suggesting that signalling through IDA and its proposed receptors, HAESA and HAESA‐LIKE2, may be deregulated in nev serk1 abscission zone cells. Our studies indicate that in addition to its previously characterized roles in stamen development and brassinosteroid perception, SERK1 plays a unique role in modulating the loss of cell adhesion that occurs during organ abscission. 相似文献
11.
Charlotte Trontin Seifollah Kiani Jason A. Corwin Kian Hématy Jennifer Yansouni Dan J. Kliebenstein Olivier Loudet 《The Plant journal : for cell and molecular biology》2014,78(1):121-133
Growth is a complex trait that adapts to the prevailing conditions by integrating many internal and external signals. Understanding the molecular origin of this variation remains a challenging issue. In this study, natural variation of shoot growth under mannitol‐induced stress was analyzed by standard quantitative trait locus mapping methods in a recombinant inbred line population derived from a cross between the Col‐0 and Cvi‐0 Arabidopsis thaliana accessions. Cloning of a major QTL specific to mannitol‐induced stress condition led to identification of EGM1 and EGM2, a pair of tandem‐duplicated genes encoding receptor‐like kinases that are potentially involved in signaling of mannitol‐associated stress responses. Using various genetic approaches, we identified two non‐synonymous mutations in the EGM2[Cvi] allele that are shared by at least ten accessions from various origins and are probably responsible for a specific tolerance to mannitol. We have shown that the enhanced shoot growth phenotype contributed by the Cvi allele is not linked to generic osmotic properties but instead to a specific chemical property of mannitol itself. This result raises the question of the function of such a gene in A. thaliana, a species that does not synthesize mannitol. Our findings suggest that the receptor‐like kinases encoded by EGM genes may be activated by mannitol produced by pathogens such as fungi, and may contribute to plant defense responses whenever mannitol is present. 相似文献
12.
13.
14.
Heather E. Moad Augen A. Pioszak 《Protein science : a publication of the Protein Society》2013,22(12):1775-1785
Calcitonin gene‐related peptide (CGRP) and adrenomedullin (AM) are related peptides that are potent vasodilators. The CGRP and AM receptors are heteromeric protein complexes comprised of a shared calcitonin receptor‐like receptor (CLR) subunit and a variable receptor activity modifying protein (RAMP) subunit. RAMP1 enables CGRP binding whereas RAMP2 confers AM specificity. How RAMPs determine peptide selectivity is unclear and the receptor stoichiometries are a topic of debate with evidence for 1:1, 2:2, and 2:1 CLR:RAMP stoichiometries. Here, we describe bacterial production of recombinant tethered RAMP‐CLR extracellular domain (ECD) fusion proteins and biochemical characterization of their peptide binding properties. Tethering the two ECDs ensures complex stability and enforces defined stoichiometry. The RAMP1‐CLR ECD fusion purified as a monomer, whereas the RAMP2‐CLR ECD fusion purified as a dimer. Both proteins selectively bound their respective peptides with affinities in the low micromolar range. Truncated CGRP(27‐37) and AM(37‐52) fragments were identified as the minimal ECD complex binding regions. The CGRP C‐terminal amide group contributed to, but was not required for, ECD binding, whereas the AM C‐terminal amide group was essential for ECD binding. Alanine‐scan experiments identified CGRP residues T30, V32, and F37 and AM residues P43, K46, I47, and Y52 as critical for ECD binding. Our results identify CGRP and AM determinants for receptor ECD complex binding and suggest that the CGRP receptor functions as a 1:1 heterodimer. In contrast, the AM receptor may function as a 2:2 dimer of heterodimers, although our results cannot rule out 2:1 or 1:1 stoichiometries. 相似文献
15.
16.
Justin Ray Xin Yang Feng Kong Tingwei Guo Fengyan Deng Steven Clough Katrina Ramonell 《Journal of Phytopathology》2018,166(7-8):506-515
Plants are under constant attack from a variety of disease‐causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor‐like kinases (RLKs) are involved in the recognition of pathogen‐associated molecular patterns (PAMPs) and activate resistance pathways against broad classes of pathogens. We have identified powdery mildew‐resistant kinase 1, an Arabidopsis gene encoding an RLK that is highly induced by chitin at early time points and localizes to the plasma membrane. Knockout mutants in pmrk1 are more susceptible to both Golovinomyces cichoracearum and Plectosphaerella cucumerina. Our data show that PMRK1 is essential in early stages of defence against fungi and provide evidence that PMRK1 may be unique to chitin‐induced signalling pathways. The results of this study indicate that PMRK1 is a critical component of plant innate immunity against fungal pathogens. 相似文献
17.
18.
19.
Samin Hosseini Ed D. L. Schmidt Freek T. Bakker 《The Plant journal : for cell and molecular biology》2020,103(2):547-560
Receptor‐like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine‐rich repeat (LRR)‐RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP‐interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR‐RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK‐like’ plus related sequences in order to estimate phylogeny within the LRR‐RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR‐RLKII 1–5), in each of which the main pattern of land plant relationships re‐occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR‐RLKs are incongruent: whereas the LRR part supports a LRR‐RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR‐RLKII–receptor complex interaction are located at N‐capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR‐RLKII clades. 相似文献
20.
Distinctive roles of receptor‐interacting protein kinases 1 and 3 in caspase‐independent cell death of L929 下载免费PDF全文
Upon tumour necrosis factor alpha (TNFα) stimulation, cells respond actively by way of cell survival, apoptosis or programmed necrosis. The receptor‐interacting proteins 1 (RIP1) and 3 (RIP3) are responsible for TNFα‐mediated programmed necrosis. To delineate the differential contributions of RIP3 and RIP1 to programmed necrosis, L929 cells were stimulated with TNFα, carbobenzoxy‐valyl‐alanyl‐aspartyl‐[O‐methyl]‐fluoromethylketone (zVAD) or zVAD along with TNFα following RNA interference against RIP1 and RIP3, respectively. RIP1 silencing did not protect cells from TNFα‐mediated cell death, while RIP3 down‐regulation made them refractory to TNFα. The heat shock protein 90 inhibitor geldanamycin (GA) down‐regulated both RIP1 and RIP3 expression, which rendered cells resistant to zVAD/TNFα‐mediated cell death but not to TNFα‐mediated cell death alone. Therefore, the protective effect of GA on zVAD/TNFα‐stimulated necrosis might be attributed to RIP3, not RIP1, down‐regulation. Pretreatment of L929 cells with rapamycin mitigated zVAD‐mediated cell death, while the autophagy inhibitor chloroquine did not affect necrotic cell death. Meanwhile, necrotic cell death by zVAD and TNFα was caused by reactive oxygen species generation and effectively diminished by lipid‐soluble butylated hydroxyanisole. Taken together, the results indicate that RIP1 and RIP3 can independently mediate death signals being transduced by two different death stimuli, zVAD and TNFα. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献