首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
To overcome the salinity‐induced loss of crop yield, a salinity‐tolerant trait is required. The SUV3 helicase is involved in the regulation of RNA surveillance and turnover in mitochondria, but the helicase activity of plant SUV3 and its role in abiotic stress tolerance have not been reported so far. Here we report that the Oryza sativa (rice) SUV3 protein exhibits DNA and RNA helicase, and ATPase activities. Furthermore, we report that SUV3 is induced in rice seedlings in response to high levels of salt. Its expression, driven by a constitutive cauliflower mosaic virus 35S promoter in IR64 transgenic rice plants, confers salinity tolerance. The T1 and T2 sense transgenic lines showed tolerance to high salinity and fully matured without any loss in yields. The T2 transgenic lines also showed tolerance to drought stress. These results suggest that the introduced trait is functional and stable in transgenic rice plants. The rice SUV3 sense transgenic lines showed lesser lipid peroxidation, electrolyte leakage and H2O2 production, along with higher activities of antioxidant enzymes under salinity stress, as compared with wild type, vector control and antisense transgenic lines. These results suggest the existence of an efficient antioxidant defence system to cope with salinity‐induced oxidative damage. Overall, this study reports that plant SUV3 exhibits DNA and RNA helicase and ATPase activities, and provides direct evidence of its function in imparting salinity stress tolerance without yield loss. The possible mechanism could be that OsSUV3 helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in transgenic rice.  相似文献   

7.
8.
Extremophile plants are valuable sources of genes conferring tolerance traits, which can be explored to improve stress tolerance of crops. Lepidium crassifolium is a halophytic relative of the model plant Arabidopsis thaliana, and displays tolerance to salt, osmotic and oxidative stresses. We have employed the modified Conditional cDNA Overexpression System to transfer a cDNA library from L. crassifolium to the glycophyte A. thaliana. By screening for salt, osmotic and oxidative stress tolerance through in vitro growth assays and non‐destructive chlorophyll fluorescence imaging, 20 Arabidopsis lines were identified with superior performance under restrictive conditions. Several cDNA inserts were cloned and confirmed to be responsible for the enhanced tolerance by analysing independent transgenic lines. Examples include full‐length cDNAs encoding proteins with high homologies to GDSL‐lipase/esterase or acyl CoA‐binding protein or proteins without known function, which could confer tolerance to one or several stress conditions. Our results confirm that random gene transfer from stress tolerant to sensitive plant species is a valuable tool to discover novel genes with potential for biotechnological applications.  相似文献   

9.
10.
11.
12.
Salinity reduces plant growth and crop production globally. The discovery of genes in salinity tolerant plants will provide the basis for effective genetic engineering strategies, leading to greater stress tolerance in economically important crops. In this study, we have identified and isolated 107 salinity tolerant candidate genes from a mangrove plant, Acanthus ebracteatus Vahl by using bacterial functional assay. Sequence analysis of these putative salinity tolerant cDNA candidates revealed that 65% of them have not been reported to be stress related and may have great potential for the elucidation of unique salinity tolerant mechanisms in mangrove. Among the genes identified were also genes that had previously been linked to stress response including salinity tolerance, verifying the reliability of this method in isolating salinity tolerant genes by using E. coli as a host.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
As sessile organisms, plants are constantly challenged by environmental stresses, including drought and high salinity. Among the various abiotic stresses, osmotic stress is one of the most important factors for growth and significantly reduces crop productivity in agriculture. Here, we report a function of the CaLEA1 protein in the defense responses of plants to osmotic stress. Our analyses showed that the CaLEA1 gene was strongly induced in pepper leaves exposed to drought and increased salinity. Furthermore, we determined that the CaLEA1 protein has a late embryogenesis abundant (LEA)_3 homolog domain highly conserved among other known group 5 LEA proteins and is localized in the processing body. We generated CaLEA1‐silenced peppers and CaLEA1‐overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to dehydration and high salinity. Virus‐induced gene silencing of CaLEA1 in pepper plants conferred enhanced sensitivity to drought and salt stresses, which was accompanied by high levels of lipid peroxidation in dehydrated and NaCl‐treated leaves. CaLEA1‐OX plants exhibited enhanced sensitivity to abscisic acid (ABA) during seed germination and in the seedling stage; furthermore, these plants were more tolerant to drought and salt stress than the wild‐type plants because of enhanced stomatal closure and increased expression of stress‐responsive genes. Collectively, our data suggest that CaLEA1 positively regulates drought and salinity tolerance through ABA‐mediated cell signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号