首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Histones are the fundamental structural proteins intimately associated with eukaryotic DNA to form a highly ordered and condensed nucleoproteic complex termed chromatin. They are the targets of various posttranslational modifications including acetylation, methylation, phosphorylation and ubiquitination that modulate the structure/function of chromatin. The combinatorial nature of histone modifications is hypothesized to define a "histone code" that considerably extends the information potential of the genetic code, giving rise to epigenetic information. Moreover, most core histones consist of several nonallelic variants that can mark specific loci and could play an important role in establishment and maintenance of epigenetic memory. Here we will briefly present our current knowledge about histone posttranslational modifications and their implications in the regulation of epigenetic information. We will next describe core histone variants, insisting on their mode of incorporation into chromatin to discuss their epigenetic function and inheritance.  相似文献   

2.
Chromatin decondensation and nuclear reprogramming by nucleoplasmin   总被引:1,自引:0,他引:1       下载免费PDF全文
Somatic cell nuclear cloning has repeatedly demonstrated striking reversibility of epigenetic regulation of cell differentiation. Upon injection into eggs, the donor nuclei exhibit global chromatin decondensation, which might contribute to reprogramming the nuclei by derepressing dormant genes. Decondensation of sperm chromatin in eggs is explained by the replacement of sperm-specific histone variants with egg-type histones by the egg protein nucleoplasmin (Npm). However, little is known about the mechanisms of chromatin decondensation in somatic nuclei that do not contain condensation-specific histone variants. Here we found that Npm could widely decondense chromatin in undifferentiated mouse cells without overt histone exchanges but with specific epigenetic modifications that are relevant to open chromatin structure. These modifications included nucleus-wide multiple histone H3 phosphorylation, acetylation of Lys 14 in histone H3, and release of heterochromatin proteins HP1beta and TIF1beta from the nuclei. The protein kinase inhibitor staurosporine inhibited chromatin decondensation and these epigenetic modifications with the exception of H3 acetylation, potentially linking these chromatin events. At the functional level, Npm pretreatment of mouse nuclei facilitated activation of four oocyte-specific genes from the nuclei injected into Xenopus laevis oocytes. Future molecular elucidation of chromatin decondensation by Npm will significantly contribute to our understanding of the plasticity of cell differentiation.  相似文献   

3.
Histone variants in metazoan development   总被引:1,自引:0,他引:1  
Embryonic development is regulated by both genetic and epigenetic mechanisms, with nearly all DNA-templated processes influenced by chromatin architecture. Sequence variations in histone proteins, core components of chromatin, provide a means to generate diversity in the chromatin structure, resulting in distinct and profound biological outcomes in the developing embryo. Emerging literature suggests that epigenetic contributions from histone variants play key roles in a number of developmental processes such as the initiation and maintenance of pericentric heterochromatin, X-inactivation, and germ cell differentiation. Here, we review the role of histone variants in the embryo with particular emphasis on early mammalian development.  相似文献   

4.
Our knowledge base involving the biochemical participants of epigenetic control has expanded greatly over the last decade. The role of epigenetic marks to DNA and histones controlled by non-coding RNAs is one of the most intensely studied areas of biology today. This review covers many of the mechanisms that non-coding RNAs and other molecules use to control gene expression and eventually affect responses to the environment. In the first part of the review, we discuss the array of covalent modifications to the genome that constitute the epigenome, which consists of the histone variants, covalent modifications, and post-translational modifications that result in gene expression changes. How the histone variants and post-translational modifications including, acetylation, methylation, phosphorylation, ubiquitination and sumoylation help form the epigenome is also summarized. Our eventual understanding of how the environment controls these modifications will open incredible opportunities in agriculture, medicine and the development of practical tools for biology. In the second part of this review we discuss the growing list of environmentally-mediated epigenetic modifications, and examples of transgenerational epigenetic inheritance events, that may begin to change our views of adaptive responses to the environment and evolution.  相似文献   

5.
6.
Dynamic regulation of chromatin structure is an important mechanism for balancing the pluripotency and cell fate decision in embryonic stem cells (ESCs). Indeed ESCs are characterized by unusual chromatin packaging, and a wide variety of chromatin regulators have been implicated in control of pluripotency and differentiation. Genome-wide maps of epigenetic factors have revealed a unique epigenetic signature in pluripotent ESCs and have contributed models to explain their plasticity. In addition to the well known epigenetic regulation through DNA methylation, histone posttranslational modifications, chromatin remodeling, and non-coding RNA, histone variants are emerging as important regulators of ESC identity. In this review, we summarize and discuss the recent progress that has highlighted the central role of histone variants in ESC pluripotency and ESC fate, focusing, in particular, on H1 variants, H2A variants H2A.X, H2A.Z and macroH2A and H3 variant H3.3.  相似文献   

7.
Zhu B  Reinberg D 《Cell research》2011,21(3):435-441
"Epigenetics" is currently defined as "the inheritance of variation (-genetics) above and beyond (epi-) changes in the DNA sequence". Despite the fact that histones are believed to carry important epigenetic information, little is known about the molecular mechanisms of the inheritance of histone-based epigenetic information, including histone modifications and histone variants. Here we review recent progress and discuss potential models for the mitotic inheritance of histone modifications-based epigenetic information.  相似文献   

8.
组蛋白变体是重要的表观遗传调控因子,能够在染色质特定位置替换常规组蛋白,维持染色质结构进而保证转录激活或抑制的顺利进行.目前,组蛋白变体的调控功能已成为植物学研究领域的一个热点.近年来,随着植物组蛋白变体生物学功能研究的不断深入,发现组蛋白变体能够在植物生长发育和环境应答调控等多个生物学过程中发挥重要作用.该文简要介绍...  相似文献   

9.
人恶性黑色素瘤(malignant melanoma)是近年来高发病率和高死亡率的肿瘤之一.目前尚缺乏有效的治疗方法.而表观遗传如DNA甲基化(DNA methylation)、组蛋白修饰(histonemodification)、染色质重塑(chromatin remodeling)及RNA干扰(RNA interference,RNAi)等改变在人黑色素瘤的发生、发展和转移中有重要作用.阐明黑色素瘤发生发展的表观遗传学机制已引起了学者的普遍关注.本文综述了人类黑色素瘤发生发展中所特异的表观遗传改变:CpG岛的异常甲基化修饰、组蛋白甲基化和乙酰化修饰、染色质重塑以及microRNA在黑色素瘤发生和转移中的作用,并对应用表观遗传修饰治疗人类黑色素瘤进行了探讨.  相似文献   

10.
11.
Melanoma is a highly heterogeneous cancer that comes in different flavors (lentigo maligna melanoma, superficial spreading melanoma, nodular melanoma, acral lentiginous/mucosal melanoma and other less common subtypes including malignant cellular blue nevus, desmoplastic melanoma, nevoid melanoma, and animal‐type melanoma) and colors (black/bluish or unpigmented). Pathologists have known for many years that melanoma displays notable changes in the nuclear architecture including thick chromatic rims, presence of mitosis, nuclear grooves, and more. It is now evident from other cancers that such changes reflect not only genomic alterations but also non‐genomic changes in both the structure of DNA and the structure of chromatin to which the DNA is bound (nucleosomes). Although aberrant gene expression resulting from DNA methylation has been known for many years, genome alterations resulting from histone modifications became evident in the current decade. In prostate and other cancers, some histone marks have clinical diagnostic and/or prognostic value. Here, we review the current data on epigenetic research in melanoma skin cancers, discuss ways to modify the epigenetic landscape of melanoma for inhibiting its growth, and propose strategies for identifying novel melanoma markers.  相似文献   

12.
Irreversible changes in the DNA sequence, including chromosomal deletions or amplification, activating or inactivating mutations in genes, have been implicated in the development and progression of melanoma. However, increasing attention is being turned towards the participation of 'epigenetic' events in melanoma progression that do not affect DNA sequence, but which nevertheless may lead to stable inherited changes in gene expression. Epigenetic events including histone modifications and DNA methylation play a key role in normal development and are crucial to establishing the correct program of gene expression. In contrast, mistargeting of such epigenetic modifications can lead to aberrant patterns of gene expression and loss of anti-cancer checkpoints. Thus, to date at least 50 genes have been reported to be dysregulated in melanoma by aberrant DNA methylation and accumulating evidence also suggests that mistargetting of histone modifications and altered chromatin remodeling activities will play a key role in melanoma. This review gives an overview of the many different types of epigenetic modifications and their involvement in cancer and especially in melanoma development and progression.  相似文献   

13.
The very nature of the packed male genome, essentially containing non-histone proteins, suggests that most of the epigenetic marks which have been defined in somatic cells are not valid in mature male gametes and that new specific rules prevail for the transmission of epigenetic information in male germ cells. Recent investigations are now uncovering a male-specific genome reprogramming mechanism, which likely cooperates with and extends beyond DNA methylation, specifying different regions of the genome and which could encode a new type of epigenetic information transmitted to the egg. Here we highlight the general traits of this unconventional male-specific epigenetic code, which largely relies on the use of histone variants and specific histone modifications.  相似文献   

14.
Histone variants and epigenetic inheritance   总被引:1,自引:0,他引:1  
Nucleosome particles, which are composed of core histones and DNA, are the basic unit of eukaryotic chromatin. Histone modifications and histone composition determine the structure and function of the chromatin; this genome packaging, often referred to as "epigenetic information", provides additional information beyond the underlying genomic sequence. The epigenetic information must be transmitted from mother cells to daughter cells during mitotic division to maintain the cell lineage identity and proper gene expression. However, the mechanisms responsible for mitotic epigenetic inheritance remain largely unknown. In this review, we focus on recent studies regarding histone variants and discuss the assembly pathways that may contribute to epigenetic inheritance. This article is part of a Special Issue entitled: Histone chaperones and Chromatin assembly.  相似文献   

15.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

16.
Melanoma is the deadliest form of skin cancer with rising incidence and mortality rates. Although early-stage melanoma is highly curable, advanced-stage melanoma is refractory to treatment. This underscores the importance of prevention and early detection as well as the need to improve treatment and prognostication of human melanoma. Elucidating the underlying mechanisms of the initi- ation and progression of human melanoma can help identify potential targets of intervention for prevention, diagnosis, therapy, and prognosis of this disease. Aberrant DNA methylation and histone modifications are the best-established epigenetic mechanisms of carcinogenesis. The occurrence of epigenetic changes prior to clinical diagnosis of cancer and their reversibility through pharmaco-logic/genetic approaches offer a promising avenue for basic and translational research on human melanoma. Candidate gene(s) or genome-wide aberrant DNA methylation and histone modifications have been observed in human melanoma tumor tissues and cell lines, and correlated to cellular and functional characteristics and/or clinicopathologicai features of this malignancy. The present review summarizes the published researches on aberrant DNA methylation and histone modifications in connection with human melanoma. Representative studies are highlighted to set forth the current state of knowledge, gaps in the knowledgebase, and future directions in these epigenetic fields of research. Examples of epigenetic therapy applied for human melanoma in vitro, and the challenges of its in vivo application for clinical treatment of solid tumors are discussed.  相似文献   

17.
18.
19.
20.
Epigenetic modifications and human disease   总被引:1,自引:0,他引:1  
Epigenetics is one of the most rapidly expanding fields in biology. The recent characterization of a human DNA methylome at single nucleotide resolution, the discovery of the CpG island shores, the finding of new histone variants and modifications, and the unveiling of genome-wide nucleosome positioning maps highlight the accelerating speed of discovery over the past two years. Increasing interest in epigenetics has been accompanied by technological breakthroughs that now make it possible to undertake large-scale epigenomic studies. These allow the mapping of epigenetic marks, such as DNA methylation, histone modifications and nucleosome positioning, which are critical for regulating gene and noncoding RNA expression. In turn, we are learning how aberrant placement of these epigenetic marks and mutations in the epigenetic machinery is involved in disease. Thus, a comprehensive understanding of epigenetic mechanisms, their interactions and alterations in health and disease, has become a priority in biomedical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号