首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
The somatotropic axis, composed essentially of the growth hormone (GH) and insulin-like growth factors (IGFs), is the main regulator of somatic growth in vertebrates. However, these protein hormones are also involved in various other major physiological processes. Although the importance of IGFs in mechanisms involving tissue regeneration has already been established, little is known regarding the direct effects of GH in these processes. In this study, we used a transgenic zebrafish (Danio rerio) model, which overexpresses GH from the beta-actin constitutive promoter. The regenerative ability of the caudal fin was assessed after repeated amputations, as well as the expression of genes related to the GH/IGF axis. The results revealed that GH overexpression increased the regenerated area of the caudal fin in transgenic fish after the second amputation. Transgenic fish also presented a decrease in gene expression of the GH receptor (ghrb), in opposition to the increased expression of the IGF1 receptors (igf1ra and igf1rb). These results suggest that transgenic fish have a higher sensitivity to IGFs than to GH during fin regeneration. With respect to the different IGFs produced locally, a decrease in igf1a expression and a significant increase in both igf2a and igf2b expression was observed, suggesting that igf1a is not directly involved in fin regeneration. Overall, the results revealed that excess GH enhances fin regeneration in zebrafish through igf2a and igf2b expression, acting indirectly on this major physiological process.  相似文献   

4.
In this study, the localization of fluorescent protein (FP) was characterized in the muscles of four species and two subspecies of eels Anguilla anguilla, A. australis, A. bicolor bicolor (b.), A. bicolor pacifica (p.) and A. mossambica in addition to the previously reported A. japonica. The open reading frame of each eel FP was 417 bp encoding 139 amino acid residues. The deduced amino acid sequences among the four species and two subspecies exhibited 91.4–100% identity, and belonged to the fatty-acid-binding protein (FABP) family. The gene structure of eel FPs in A. japonica, A. anguilla, A. australis, A. bicolor b., A. bicolor p. and A. mossambica have four exons and three introns, and were common to that of FABP family. The apo eel FPs expressed by Escherichia coli with recombinant eel FP genes were analysed for the fluorescent properties in the presence of bilirubin. The excitation and emission spectra of holo eel FPs had the maximum wavelengths of 490–496 and 527–530 nm, respectively. The holo eel FPs indicated that the fluorescent intensities were stronger in A. japonica and A. bicolor than in A. mossambica, A. australis and A. anguilla. The comparison of amino acid sequences revealed two common substitutions in A. mossambica, A. australis and A. anguilla with weak fluorescent intensity.  相似文献   

5.
Sulphur (S) is incorporated into diverse primary and secondary metabolites that play important roles in proper growth and development of plants. In cereals, a fraction of the nitrogen (N) accumulated in developing grains is guaranteed by amino acid remobilization from vegetative tissues, a contribution that becomes critical when soil nutrients are deficient. Glutamine synthetase (GS) and amino acid transporters (AAT) are key components involved in N assimilation and recycling. The aim of the present study was to evaluate the effect of S availability on the expressions of HvGS and several selected HvAAT genes in barley plants and on the phloem exudation rate of amino acids. To this end, two independent experiments were designed to impose low S availability conditions to barley plants. Low S availability caused a decrease in the phloem exudation rate of amino acids as well as in the gene expression of all the HvGS genes and five of the six HvAAT genes analyzed. The strong correlation found between the phloem amino acid exudation rate and HvGS1-1, HvGS1-2, HvAAP7, and HvProT1 gene expression may indicate the participation of these genes in the regulation of amino acid remobilization through the phloem.  相似文献   

6.
Here, we report for the first time the genome-wide identification and expression analysis of the molecular chaperone BiP genes in Citrus. Six genes encoding the conserved protein domain family GPR78/BiP/KAR2 were identified in the genome of Citrus sinensis and C. clementina. Two of them, named here as CsBiP1 and CsBiP2, were classified as true BiPs based on their deduced amino acid sequences. Alignment of the deduced amino acid sequences of CsBiP1 and CsBiP2 with BiP homologs from soybean and Arabidopsis showed that they contain all the conserved functional motifs of BiPs. Analysis of the promoter region of CsBiPs revealed the existence of cis-acting regulatory sequences involved in abiotic, heat-shock, and endoplasmic reticulum (ER) stress responses. Publicly available RNA-seq data indicated that CsBiP1 is abundantly expressed in leaf, flower, fruit, and callus, whereas CsBiP2 expression is rarely detected in any tissues under normal conditions. Comparative quantitative real-time PCR (qPCR) analysis of expression of these genes between C. sinensis grafted on the drought-tolerant “Rangpur” lime (C. limonia) and -sensitive “Flying Dragon” trifoliate orange (Poncirus trifoliata) rootstocks showed that CsBiP1 was upregulated by drought stress on the former but downregulated on the latter, whereas the CsBiP2 mRNA levels were downregulated on drought-stressed “Flying Dragon,” but remained constant on “Rangpur.” CsBiP2 upregulation was only observed in C. sinensis seedlings subjected to osmotic and cold treatments. Taken together, these results indicate the existence of two highly conserved BiP genes in Citrus that are differentially regulated in the different tissues and in response to abiotic stresses.  相似文献   

7.
Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.  相似文献   

8.
9.
10.
11.
12.
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2, and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenetic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, α/β-, γ-, and κ-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3, and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

13.
14.
Coconuts (Cocos nucifera L.) are divided by the height into tall and dwarf types. In many plants the short phenotype was emerged by mutation of the GA20ox gene encoding the enzyme involved in gibberellin (GA) biosynthesis. Two CnGA20ox genes, CnGA20ox1 and CnGA20ox2, were cloned from tall and dwarf types coconut. The sequences, gene structures and expressions were compared. The structure of each gene comprised three exons and two introns. The CnGA20ox1 and CnGA20ox2 genes consisted of the coding region of 1110 and 1131 bp, encoding proteins of 369 and 376 amino acids, respectively. Their amino acid sequences are highly homologous to GA20ox1 and GA20ox2 genes of Elaeis guineensis, but only 57% homologous to each other. However, the characteristic amino acids two histidines and one aspartic acid which are the two iron (Fe2+) binding residues, and arginine and serine which are the substrate binding residues of the dioxygenase enzyme in the 20G-FeII_Oxy domain involved in GA biosynthesis, were found in the active site of both enzymes. The evolutionary relationship of their proteins revealed three clusters in vascular plants, with two subgroups in dicots and three subgroups in monocots. This result confirmed that CnGA20ox was present as multi-copy genes, and at least two groups CnGA20ox1 and CnGA20ox2 were found in coconut. The nucleotide sequences of CnGA20ox1 gene in both coconut types were identical but its expression was about three folds higher in the leaves of tall coconut than in those of dwarf type which was in good agreement with their height. In contrast, the nucleotide sequences of CnGA20ox2 gene in the two coconut types were different, but the expression of CnGA20ox2 gene could not be detected in either coconut type. The promoter region of CnGA20ox1 gene was cloned, and the core promoter sequences and various cis-elements were found. The CnGA20ox1 gene should be responsible for the height in coconut, which is different from other plants because no mutation was present in CnGA20ox1 gene of dwarf type coconut.  相似文献   

15.
The complete mitochondrial genome of Cucullaea labiata (Arcoida: Cucullaeidae) was firstly determined in this study in order to better understand the phylogenetic relationship between Cucullaeidae and Arcidae. The C. labiata mitochondrial genome was 25,845 bp in size and contained 12 protein-coding genes, 2 rRNA and 22 tRNA genes. The number and the location of the tRNA genes were different from three Arcidae species (Scapharca broughtonii, Scapharca kagoshimensis and Tegillarca granosa). Gene arrangement also differed dramatically. The length of the non-coding regions was 10,559 bp, in which the largest one (6057 bp) included eight point nine copies of a 659 bp repeat motif. The number of repeated sequences was different in different individuals, similar to the findings from the mitochondrial genome of S. broughtonii and Placopecten magellanicus. One intron was found in cox1 gene both in CL_98 and in CL_99 individuals of C. labiata. The reason why mitochondrial introns are retained so scarcely in bivalve taxa needs further research. Phylogenetic analyses based on 12 concatenated amino acid sequences of protein-coding genes supported Cucullaeidae was the sister group of Arcidae.  相似文献   

16.
17.
Excessive hormone secretion during hypercorticism and acromegaly results in significant disturbances in bone remodeling, decrease in bone quality, and bone fractures following small traumas. However, the mechanisms of the development of such changes are not clear. In the present study, we examined specimens of bone tissue from patients with endogenous hypercorticism (increased cortisol secretion) and acromegaly (increased growth hormone secretion) obtained during transnasal adenomectomy. Our main purpose was to analyze the expression of genes responsible for osteogenesis in the bone tissue specimens from patients with hypercorticism and acromegaly, targeting an assessment of pathogenetic aspects associated with bone complications. The study included 19 specimens of bone tissue from patients with pituitary tumors (samples with acromegaly, Cushing disease, and inactive pituitary adenomas; the latter served as a control group). We revealed 14 genes (ACP5, ALPL, BGLAP, BMP7, CD40, COL1A1, COL1A2, IGF1, IGFBP2, IL6, LEP, LTA, MMP2, WNT10B) which appeared to be the most important and require further detailed study. The present study confirmed the key role of the Wnt-signaling pathway in the osteogenic process. In addition, we present new data on molecular mechanisms of development of skeletal complications in the case of cortisol and growth hormone oversecretion in humans.  相似文献   

18.
19.
The functions of serotonin include the growth and development regulation of female germ cells as well as early embryo development. RT-PCR analysis of mRNA expression of the genes of the enzymes for synthesis and degradation and transporters and receptors of serotonin during folliculogenesis and preimplantation development of mice was performed to discover the particular mechanisms of these functions. The mRNA of tryptophan hydroxylase tph1 and monoaminoxidase maoa; membrane transporter sert and vesicular transporter vmat2; and serotonin receptors htr1b, htr1d, htr2a, htr5b, and htr7 were revealed in granulosa cells. The expression of mRNA of the aromatic amino acid decarboxylase ddc and the htr2b receptor additionally appears in the yellow body. The expression of mRNA of the genes of the tph2, ddc, and maoa enzymes; the sert, vmat1, and vmat2 transporters; and quite a number of receptors is observed during the preimplantation development, and it is transitory in most of them. The expression of all components and its dynamics suggest that the serotonergic signaling system is functionally active in mouse folliculogenesis and preimplantation development.  相似文献   

20.
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号