首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish–whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.  相似文献   

2.
Leymus mollis (Trin.) Pilger (NsNsXmXm, 2n = 28), a wild relative of common wheat, possesses many potentially valuable traits for wheat breeding, i.e., strong and short stems, long spikes with numerous spikelets, tolerance to drought and cold, and resistance to many fungal and bacterial diseases. In this study, we hybridized a wheat–L. mollis triple substitution line 05DM6 × Triticum aestivum L. cv. 7182 to obtain DM45, a single chromosome substitution line. Cytological studies demonstrated that DM45 had a chromosome karyotype of 2n = 42 = 21II. Genomic in situ hybridization analysis indicated that DM45 had a pair of Ns chromosomes from L. mollis. Analysis with DNA markers, i.e., two simple sequence repeats (Xgdm111 and Xgdm126) and two expressed sequence tag-sequence tagged sites (CD453004 and BE443796), showed that the wheat 1Ds chromosome were substituted with a pair of 1Ns chromosomes from L. mollis in DM45. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggested that DM45 possessed Ns genome-specific bands in the low and high molecular weight glutenin subunit regions, whereas it lacked one glutenin subunit translated from genes on chromosome 1D, thereby confirming that DM45 was a wheat–L. mollis 1Ns#1 (1D) disomic substitution line. Agronomic trait evaluations showed that DM45 was much improved in terms of the 1000-grain weight and the protein and glutenin contents of its seeds, as well as having more florets and spikelets compared with its relative, common wheat variety 7182. The substitution line DM45 could be used as a novel germplasm in wheat genetic and breeding programs.  相似文献   

3.

Key message

Two QTL with pleiotropic effects on plant height and spike length linked in coupling phase on chromosome 2DS were dissected, and diagnostic marker for each QTL was developed.

Abstract

Plant height (PHT) is a crucial trait related to plant architecture and yield potential, and dissection of its underlying genetic basis would help to improve the efficiency of designed breeding in wheat. Here, two quantitative trait loci (QTL) linked in coupling phase on the short arm of chromosome 2D with pleiotropic effects on PHT and spike length, QPht/Sl.cau-2D.1 and QPht/Sl.cau-2D.2, were separated and characterized. QPht/Sl.cau-2D.1 is a novel QTL located between SNP makers BS00022234_51 and BobWhite_rep_c63957_1472. QPht/Sl.cau-2D.2 is mapped between two SSR markers, SSR-2062 and Xgwm484, which are located on the same genomic interval as Rht8. Moreover, the diagnostic marker tightly linked with each QTL was developed for the haplotype analysis using diverse panels of wheat accessions. The frequency of the height-reduced allele of QPht/Sl.cau-2D.1 is much lower than that of QPht/Sl.cau-2D.2, suggesting that this novel QTL may be an attractive target for genetic improvement. Consistent with a previous study of Rht8, a significant difference in cell length was observed between the NILs of QPht/Sl.cau-2D.2. By contrast, there was no difference in cell length between NILs of QPht/Sl.cau-2D.1, indicating that the underlying molecular mechanism for these two QTL may be different. Collectively, these data provide a new example of QTL dissection, and the developed diagnostic markers will be useful in marker-assisted pyramiding of QPht/Sl.cau-2D.1 and/or QPht/Sl.cau-2D.2 with the other genes in wheat breeding.
  相似文献   

4.

Key message

The multiple synthetic derivatives platform described in this study will provide an opportunity for effective utilization of Aegilops tauschii traits and genes for wheat breeding.

Abstract

Introducing genes from wild relatives is the best option to increase genetic diversity and discover new alleles necessary for wheat improvement. A population harboring genomic fragments from the diploid wheat progenitor Aegilops tauschii Coss. in the background of bread wheat (Triticum aestivum L.) was developed by crossing and backcrossing 43 synthetic wheat lines with the common wheat cultivar Norin 61. We named this population multiple synthetic derivatives (MSD). To validate the suitability of this population for wheat breeding and genetic studies, we randomly selected 400 MSD lines and genotyped them by using Diversity Array Technology sequencing markers. We scored black glume as a qualitative trait and heading time in two environments in Sudan as a quantitative trait. Our results showed high genetic diversity and less recombination which is expected from the nature of the population. Genome-wide association (GWA) analysis showed one QTL at the short arm of chromosome 1D different from those alleles reported previously indicating that black glume in the MSD population is controlled by new allele at the same locus. For heading time, from the two environments, GWA analysis revealed three QTLs on the short arms of chromosomes 2A, 2B and 2D and two on the long arms of chromosomes 5A and 5D. Using the MSD population, which represents the diversity of 43 Ae. tauschii accessions representing most of its natural habitat, QTLs or genes and desired phenotypes (such as drought, heat and salinity tolerance) could be identified and selected for utilization in wheat breeding.
  相似文献   

5.
The variety of common spring wheat Chelyaba 75 carries a translocation from Aegilops speltoides Tausch in the chromosome 2D, which contains the leaf rust resistance gene and gametocidal genes. The length of this translocation was determined by molecular-genetic analysis. It is shown that the long arm of chromosome 2D is completely replaced by the long arm of chromosome 2S; it is possible that translocation involves the near-centromere region of the short arm. According to molecular analysis data, the translocation from Ae. speltoides in the Chelyaba 75 variety differs from the 2S chromosome region carrying the Lr35/Sr39 genes. This makes it possible to designate the leaf rust resistance gene of the Chelyaba 75 as LrSp2. The inheritance of LrSp2 in four populations from crossing Chelyaba 75 with different varieties of common wheat was studied. Estimation of leaf rust resistance of F2 and F3 hybrids in field conditions (2015–2016) revealed the absence of susceptible plants. The presence of 2DS.2SL translocation in hybrid plants was confirmed by molecular analysis. The results indicate the action of the gametocidal gene localized in the 2DS.2SL translocation and the fact that its tight linkage to the LrSp2 gene is inherited in a series of generations.  相似文献   

6.
Powdery mildew, a wheat (Triticum aestivum L.) foliar disease caused by Blumeria graminis (DC.) E.O. Speer f. sp. tritici, imposes a constant challenge on wheat production in areas with cool or maritime climates. This study was conducted to identify and transfer the resistance gene in the newly identified common wheat accession ‘D29’. Genetic analysis of the F2 population derived from a cross of D29 with the susceptible elite cultivar Y158 suggested a single dominant gene is responsible for the powdery mildew resistance in this germplasm. This gene was mapped to chromosome 2AL in a region flanked by microsatellite markers Xgdm93 and Xhbg327, and co-segregated with sequence-tagged site (STS) markers Xsts_bcd1231 and TaAetPR5. An allelic test indicated that the D29 gene was allelic to the Pm4 locus. To further evaluate the resistance conferred by this gene and develop new germplasms for breeding, this gene, as well as Pm4a and Pm4b, was transferred to Y158 through backcross and marker-assisted selection. In the resistance spectrum analysis, the D29 gene displayed a resistance spectrum distinguishable from the other Pm4 alleles, including Pm4a, Pm4b, and Pm4c, and thus was designated as Pm4e. The identification of new allelic variation at the Pm4 locus is important for understanding the resistance gene evolution and for breeding wheat cultivars with powdery mildew resistance.  相似文献   

7.

Key message

A single recessive powdery mildew resistance gene Pm61 from wheat landrace Xuxusanyuehuang was mapped within a 0.46-cM genetic interval spanning a 1.3-Mb interval of the genomic region of chromosome arm 4AL.

Abstract

Epidemics of powdery mildew incited by the biotrophic fungus Blumeria graminis f. sp. tritici (Bgt) have caused significant yield reductions in many wheat (Triticum aestivum)-producing regions. Identification of powdery mildew resistance genes is required for sustainable improvement of wheat for disease resistance. Chinese wheat landrace Xuxusanyuehuang was resistant to several Bgt isolates at the seedling stage. Genetic analysis based on the inoculation of Bgt isolate E09 on the F1, F2, and F2:3 populations produced by crossing Xuxusanyuehuang to susceptible cultivar Mingxian 169 revealed that the resistance of Xuxusanyuehuang was controlled by a single recessive gene. Bulked segregant analysis and simple sequence repeat (SSR) mapping placed the gene on chromosome bin 4AL-4-0.80-1.00. Comparative genomics analysis was performed to detect the collinear genomic regions of Brachypodium distachyon, rice, sorghum, Aegilops tauschii, T. urartu, and T. turgidum ssp. dicoccoides. Based on the use of 454 contig sequences and the International Wheat Genome Sequence Consortium survey sequence of Chinese Spring wheat, four EST-SSR and seven SSR markers were linked to the gene. An F5 recombinant inbred line population derived from Xuxusanyuehuang?×?Mingxian 169 cross was used to develop the genetic linkage map. The gene was localized in a 0.46-cM genetic interval between Xgwm160 and Xicsx79 corresponding to 1.3-Mb interval of the genomic region in wheat genome. This is a new locus for powdery mildew resistance on chromosome arm 4AL and is designated Pm61.
  相似文献   

8.
A major quantitative trait locus (QTL) associated with resistance to Fusarium head blight (FHB) was identified on chromosome 3BS between simple sequence repeat (SSR) markers Xgwm389 and Xgwm493 in wheat “Ning 7840”, a derivative from “Sumai 3”. However, the marker density of SSR in the QTL region was much lower than that required for marker-assisted selection (MAS) and map-based cloning. The objective of this study was to exploit new markers to increase marker density in this QTL region by using single-strand conformational polymorphism (SSCP) markers developed from wheat-expressed sequence tags (ESTs) on 3BS bin 8-0.78-1.0. Sixty-nine out of 85 SSCP primer pairs amplified PCR (polymerase chain reaction) products from the genomic DNA of “Chinese Spring”. Thirty-four primer pairs amplified PCR products that could form clear ssDNA (single strand DNA) bands through denaturation treatment. Ten SSCP markers had polymorphisms between Ning 7840 and “Clark”. Five of the ten polymorphic SSCP markers were located on chromosome 3B by nullitetrasomic analysis. Three SSCP markers (Xsscp6, Xsscp20, and Xsscp21) were mapped into the region between Xgwm493 and Xgwm533 and possessed a higher coefficient of determination (R2) than Xgwm493 and Xgwm533. The SSCP markers, Xsscp6, Xsscp20, and Xsscp21, can be used for map-based cloning of the QTL and for marker-assisted selection in FHB resistance breeding.  相似文献   

9.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

10.
11.

Key message

A new and dominant R gene Stb19 is identified from a soft wheat cultivar ‘Lorikeet’ and was mapped on the distal region of chromosome 1DS. Two tightly linked KASP markers were also discovered and validated for molecular-assisted breeding programs.

Abstract

A new R gene, designated as Stb19, provides resistance to Zymoseptoria tritici in wheat. This new dominant gene resides on the short arm of chromosome 1D, exhibiting complete resistance to three Z. tritici isolates, WAI332, WAI251, and WAI161, at the seedling stage. A genetic linkage map, based on an F2:3 population of ‘Lorikeet’ and ‘Summit,’ found the Stb19 gene at a 9.3 cM region on 1DS, closely linked with two Kompetitive Allele-Specific PCR markers, snp_4909967 and snp_1218021. Further, the two markers were tested and validated in another F2:3 population and 266 different wheat accessions, which gave over 95% accuracy of resistance/susceptibility prediction. Combined with the physical location of the identified SNPs and the previous evidence of gene order on chromosome 1DS (centromere–Sr45Sr33Lr21–telomere), Stb19 is proposed to be located between Sr33 and Lr21. Thus, the newly discovered Stb19 along with the KASP markers represents an increase in genetic resources available for wheat breeding resistance to Z. tritici.
  相似文献   

12.
Dissecting the genetic basis for the traits of northern-style Chinese steamed bread (NCSB) is of great significance for wheat quality breeding. Quantitative trait loci (QTLs) for the processing quality of NCSB were studied using a recombinant inbred line (RIL) consisting of 173 lines derived from a “Shannong01–35 × Gaocheng9411” cross. Twenty-four putative additive QTLs were detected on chromosomes 1A, 1B, 1D, 3A, 3B, 4A, 4B, 5B, 6B, and 7B. Of these QTLs, QTex1A.1-27, QHei5B.5-488, and QGum4B.4-17 had the highest contribution and accounted for 9.33, 10.9, and 12.0% of the phenotypic variations, respectively. Several co-located QTLs with additive effects were detected on chromosomes 1A, 1D, 4B, and 5B. Two clusters (RFL_CONTIG2160_524-WSNP_CAP12_C2438_1180601 and EX_C101685_705-RAC875_C27536_611) for height, total score, and texture and for chewiness, gumminess, and hardness were detected on chromosomes 1A and 4B, respectively. Two QTLs for chewiness and hardness (QCh1D-4, QHa1D-4) with additive effects were detected; these alleles could be good targets for improving the processing quality of steamed bread from common wheat (Triticum aestivum L.). In addition, QTLs for wheat flour quality and the associated correlations with NCSB were simultaneously analyzed. Negative correlations were detected between chewiness and the wet/dry gluten content (WGC/DGC) or protein content. Two QTLs (QCh4B.4-17 and QPr4B.4-17) and three QTLs (QCh4B.4-13, QWG4B.4-13, and QDG4B.4-13) clustered in the same chromosomal region. The detected QTL clusters should be further investigated during wheat breeding and could be used by breeders to improve wheat quality and especially the processing quality of NCSB.  相似文献   

13.

Key message

Here, we describe a strategy to improve broad-spectrum leaf rust resistance by marker-assisted combination of two partial resistance genes. One of them represents a novel partial adult plant resistance gene, named Lr75.

Abstract

Leaf rust caused by the fungal pathogen Puccinia triticina is a damaging disease of wheat (Triticum aestivum L.). The combination of several, additively-acting partial disease resistance genes has been proposed as a suitable strategy to breed wheat cultivars with high levels of durable field resistance. The Swiss winter wheat cultivar ‘Forno’ continues to show near-immunity to leaf rust since its release in the 1980s. This resistance is conferred by the presence of at least six quantitative trait loci (QTL), one of which is associated with the morphological trait leaf tip necrosis. Here, we used a marker-informed strategy to introgress two ‘Forno’ QTLs into the leaf rust-susceptible Swiss winter wheat cultivar ‘Arina’. The resulting backcross line ‘ArinaLrFor’ showed markedly increased leaf rust resistance in multiple locations over several years. One of the introgressed QTLs, QLr.sfr-1BS, is located on chromosome 1BS. We developed chromosome 1B-specific microsatellite markers by exploiting the Illumina survey sequences of wheat cv. ‘Chinese Spring’ and mapped QLr.sfr-1BS to a 4.3 cM interval flanked by the SSR markers gwm604 and swm271. QLr.sfr-1BS does not share a genetic location with any of the described leaf rust resistance genes present on chromosome 1B. Therefore, QLr.sfr-1BS is novel and was designated as Lr75. We conclude that marker-assisted combination of partial resistance genes is a feasible strategy to increase broad-spectrum leaf rust resistance. The identification of Lr75 adds a novel and highly useful gene to the small set of known partial, adult plant leaf rust resistance genes.
  相似文献   

14.
A mapping population of 126 doubled haploid (DH) lines derived from a cross between the English winter wheat cultivars Spark and Rialto was evaluated for response to Puccinia graminis f. sp. tritici in the greenhouse and in artificially inoculated field plots at two locations over 3 years (2011, 2012 and 2013). Genetic analysis indicated the involvement of two seedling genes (Sr5 and Sr31, contributed by Rialto) and three adult plant resistance genes. QTL analyses of field data showed the involvement of three consistent effects QTL on chromosome arms 1BS (contributed by Rialto), and 3BS and chromosome 5A (contributed by Spark) in the observed resistance to stem rust. These QTLs explained average phenotypic variation of 78.5, 9.0 and 5.9 %, respectively. With the presence of virulence for Sr5 and absence of Sr31 virulence in the field, the QTL detected on 1BS (QSr.sun-1BS) was attributed to the major seedling resistance gene Sr31. The QTL located on chromosome arm 3BS (QSr.sun-3BS) was closely associated with SSR marker gwm1034, and the QTL detected on 5A (QSr.sun-5A) was closely linked with SSR marker gwm443. DH lines carrying the combination of QSr.sun-3BS and QSr.sun-5A exhibited lower stem rust responses indicating the additive effects of the two APR genes in reducing disease severity. The markers identified in this study can be useful in pyramiding these QTLs with other major or minor genes and marker assisted selection for stem rust resistance in wheat.  相似文献   

15.

Key message

We identified two novel wheat stem rust resistance genes, Sr-1644-1Sh and Sr-1644-5Sh in Aegilops sharonensis that are effective against widely virulent African races of the wheat stem rust pathogen.

Abstract

Stem rust is one of the most important diseases of wheat in the world. When single stem rust resistance (Sr) genes are deployed in wheat, they are often rapidly overcome by the pathogen. To this end, we initiated a search for novel sources of resistance in diverse wheat relatives and identified the wild goatgrass species Aegilops sharonesis (Sharon goatgrass) as a rich reservoir of resistance to wheat stem rust. The objectives of this study were to discover and map novel Sr genes in Ae. sharonensis and to explore the possibility of identifying new Sr genes by genome-wide association study (GWAS). We developed two biparental populations between resistant and susceptible accessions of Ae. sharonensis and performed QTL and linkage analysis. In an F6 recombinant inbred line and an F2 population, two genes were identified that mapped to the short arm of chromosome 1Ssh, designated as Sr-1644-1Sh, and the long arm of chromosome 5Ssh, designated as Sr-1644-5Sh. The gene Sr-1644-1Sh confers a high level of resistance to race TTKSK (a member of the Ug99 race group), while the gene Sr-1644-5Sh conditions strong resistance to TRTTF, another widely virulent race found in Yemen. Additionally, GWAS was conducted on 125 diverse Ae. sharonensis accessions for stem rust resistance. The gene Sr-1644-1Sh was detected by GWAS, while Sr-1644-5Sh was not detected, indicating that the effectiveness of GWAS might be affected by marker density, population structure, low allele frequency and other factors.
  相似文献   

16.

Key message

This study identified Rht25, a new plant height locus on wheat chromosome arm 6AS, and characterized its pleiotropic effects on important agronomic traits.

Abstract

Understanding genes regulating wheat plant height is important to optimize harvest index and maximize grain yield. In modern wheat varieties grown under high-input conditions, the gibberellin-insensitive semi-dwarfing alleles Rht-B1b and Rht-D1b have been used extensively to confer lodging tolerance and improve harvest index. However, negative pleiotropic effects of these alleles (e.g., poor seedling emergence and reduced biomass) can cause yield losses in hot and dry environments. As part of current efforts to diversify the dwarfing alleles used in wheat breeding, we identified a quantitative trait locus (QHt.ucw-6AS) affecting plant height in the proximal region of chromosome arm 6AS (<?0.4 cM from the centromere). Using a large segregating population (~?2800 gametes) and extensive progeny tests (70–93 plants per recombinant family), we mapped QHt.ucw-6AS as a Mendelian locus to a 0.2 cM interval (144.0–148.3 Mb, IWGSC Ref Seq v1.0) and show that it is different from Rht18. QHt.ucw-6AS is officially designated as Rht25, with Rht25a representing the height-increasing allele and Rht25b the dwarfing allele. The average dwarfing effect of Rht25b was found to be approximately half of the effect observed for Rht-B1b and Rht-D1b, and the effect is greater in the presence of the height-increasing Rht-B1a and Rht-D1a alleles than in the presence of the dwarfing alleles. Rht25b is gibberellin-sensitive and shows significant pleiotropic effects on coleoptile length, heading date, spike length, spikelet number, spikelet density, and grain weight. Rht25 represents a new alternative dwarfing locus that should be evaluated for its potential to improve wheat yield in different environments.
  相似文献   

17.
The ability of Bacillus subtilis Cohn and Bacillus thuringiensis Berliner to induce systemic resistance in wheat plants to the casual agent of Septoria nodorum Berk., blotch has been studied. It has been shown that strains of Bacillus ssp. that possess the capacity for endophytic survival have antagonistic activity against this pathogen in vitro. A reduction of the degree of Septoria nodorum blotch development on wheat leaves under the influence of Bacillus spp. was accompanied by the suppression of catalase activity, an increase in peroxidase activity and H2O2 content, and expression of defence related genes such us PR-1, PR-6, and PR-9. It has been shown that B. subtilis 26 D induces expression levels of wheat pathogenesis-related (PR) genes which marks a SA-dependent pathway of sustainable development and that B. thuringiensis V-5689 and V-6066 induces a JA/ET-dependent pathway. These results suggest that these strain Bacillus spp. promotes the formation of wheat plant resistance to S. nodorum through systemic activation of the plant defense system. The designed bacterial consortium formed a complex biological response in wheat plants infected phytopathogen.  相似文献   

18.
Leaf rust, caused by Puccinia triticina, is one of the most widespread diseases in common wheat globally. The Chinese wheat cultivar Zhoumai 22 is highly resistant to leaf rust at the seedling and adult stages. Seedlings of Zhoumai 22 and 36 lines with known leaf rust resistance genes were inoculated with 13 P. triticina races for gene postulation. The leaf rust response of Zhoumai 22 was different from those of the single gene lines. With the objective of identifying and mapping, the new gene(s) for resistance to leaf rust, F1, F2 plants and F2:3 lines from the cross Zhoumai 22/Chinese Spring were inoculated with Chinese P. triticina race FHDQ at the seedling stage. A single dominant gene, tentatively designated LrZH22, conferred resistance. To identify other possible genes in Zhoumai 22, ten P. triticina races avirulent on Zhoumai 22 were used to inoculate 24 F2:3 lines. The same gene conferred resistance to all ten avirulent races. A total of 1300 simple sequence repeat (SSR) markers and 36 EST markers on 2BS were used to test the parents, and resistant and susceptible bulks. Resistance gene LrZH22 was mapped in the chromosome bin 2BS1-0.53-0.75 and closely linked to six SSR markers (barc183, barc55, gwm148, gwm410, gwm374 and wmc474) and two EST markers (BF202681 and BE499478) on chromosome arm 2BS. The two closest flanking SSR loci were Xbarc55 and Xgwm374 with genetic distances of 2.4 and 4.8 cM from LrZH22, respectively. Six designated genes (Lr13, Lr16, Lr23, Lr35, Lr48 and Lr73) are located on chromosome arm 2BS. In seedling tests, LrZH22 was temperature sensitive, conferring resistance at high temperatures. The reaction pattern of Zhoumai 22 was different from that of RL 4031 (Lr13), RL 6005 (Lr16) and RL 6012 (Lr23), Lr35 and Lr48 are adult-plant resistance genes, and Lr73 is not sensitive to the temperature. Therefore, LrZH22 is likely to be a new leaf rust resistance gene or allele.  相似文献   

19.
Stripe or yellow rust of wheat, caused by Puccinia striiformis f. sp. tritici, is an important disease in many wheat-growing regions of the world. A number of major genes providing resistance to stripe rust have been used in breeding, including one gene that is present in the differential tester Carstens V. The objective of this study was to locate and map a stripe rust resistance gene transferred from Carstens V to Avocet S and to use molecular tools to locate a number of genes segregating in the cross Savannah/Senat. One of the genes present in Senat was predicted to be a gene that is present in Carstens V. For this latter purpose, stripe rust response data from both seedling and field tests on a doubled haploid population consisting of 77 lines were compared to an available molecular map for the same lines using a non-parametric quantitative trait loci (QTL) analysis. Results obtained in Denmark suggested that a strong component of resistance with the specificity of Carstens V was located in chromosome arm 2AL, and this was consistent with chromosome location work undertaken in Australia. Since this gene segregated independently of Yr1, the only other stripe rust resistance gene known to be located in this chromosome arm, it was designated Yr32. Further QTLs originating from Senat were located in chromosomes 1BL, 4D, and 7DS and from Savannah on 5B, but it was not possible to characterize them as unique resistance genes in any definitive way. Yr32 was detected in several wheats, including the North American differential tester Tres.  相似文献   

20.

Key message

One major and three minor QTLs for resistance to pre-harvest sprouting (PHS) were identified from a white wheat variety “Danby.” The major QTL on chromosome 3A is TaPHS1, and the sequence variation in its promoter region was responsible for the PHS resistance. Additive?×?additive effects were detected between two minor QTLs on chromosomes 3B and 5A, which can greatly enhance the PHS resistance.

Abstract

Pre-harvest sprouting (PHS) causes significant losses in yield and quality in wheat. White wheat is usually more susceptible to PHS than red wheat. Therefore, the use of none grain color-related PHS resistance quantitative trait loci (QTLs) is essential for the improvement in PHS resistance in white wheat. To identify PHS resistance QTLs in the white wheat cultivar “Danby” and determine their effects, a doubled haploid population derived from a cross of Danby?×?“Tiger” was genotyped using genotyping-by-sequencing markers and phenotyped for PHS resistance in two greenhouse and one field experiments. One major QTL corresponding to a previously cloned gene, TaPHS1, was consistently detected on the chromosome arm 3AS in all three experiments and explained 21.6–41.0% of the phenotypic variations. A SNP (SNP?222) in the promoter of TaPHS1 co-segregated with PHS in this mapping population and was also significantly associated with PHS in an association panel. Gene sequence comparison and gene expression analysis further confirmed that SNP?222 is most likely the causal mutation in TaPHS1 for PHS resistance in Danby in this study. In addition, two stable minor QTLs on chromosome arms 3BS and 5AL were detected in two experiments with allele effects consistently contributed by Danby, while one minor QTL on 2AS was detected in two environments with contradicted allelic effects. The two stable minor QTLs showed significant additive?×?additive effects. The results demonstrated that pyramiding those three QTLs using breeder-friendly KASP markers developed in this study could greatly improve PHS resistance in white wheat.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号