首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The identification of transfers of useful alien genes for metal homeostasis from non-progenitor Aegilops species using the widely available anchored wheat SSR markers is difficult due to their lower polymorphism with the distant related wild species and the lack of locus specificity further restricts their application. The present study deals with the development of intron targeted amplified polymorphic (ITAP) markers for the metal homeostasis genes present on chromosomes of groups 2 and 7 of Triticeae. The mRNA sequences of 27 metal homeostasis genes were retrieved from different plant species using NCBI database and their BLASTn was performed against the wheat draft genome sequences in Ensemblplants to get exonic and intronic sequences of the corresponding metal homeostasis genes in wheat. The ITAP primers were developed in such a way that they would anneal to the conserved flanking exonic regions of the genes and amplify across highly variable introns within the PCR limits. The primers led to the amplification of variable intronic sequences of genes with polymorphism between non-progenitor Aegilops species and the recipient wheat cultivars. Further, the polymorphic ITAP markers were used to characterize the transfers of metal homeostasis genes from the non-progenitor Aegilops species to the BC2F5 wheat-Aegilops derivatives, developed through induced homoeologous pairing. The derivatives with significant percent increase in grain Fe and Zn content over the elite cultivar PBW343 LrP showed the introgression of some of the useful Aegilops alleles of the metal homeostasis genes. The use of different metal homeostasis genes using this approach is the first report of the direct contribution of the genes for increasing the grain micronutrient content for developing biofortified wheat lines with reduced linkage drag.  相似文献   

3.
Using bioinformatics analysis, the homologs of genes Sr33 and Sr35 were identified in the genomes of Triticum aestivum, Hordeum vulgare, and Triticum urartu. It is known that these genes confer resistance to highly virulent wheat stem rust races (Ug99). To identify amino acid sites important for this resistance, the found homologs were compared with the Sr33 and Sr35 protein sequences. It was found that sequences S5DMA6 and E9P785 are the closest homologs of protein RGAle, a Sr33 gene product, and sequences M7YFA9 (CNL-C) and F2E9R2 are homologs of protein CNL9, a Sr35 gene product. It is assumed that the homologs of genes Sr33 and Sr35, which were obtained from the wild relatives of wheat and barley, can confer resistance to various forms of stem rust and can be used in the future breeding programs aimed at improvement of national wheat varieties.  相似文献   

4.
Nearly 2 billion people worldwide are suffering from iron (Fe) deficiency anemia and zinc (Zn) deficiency. The available elite bread wheat cultivars have inherently low grain micronutrient content. Biofortification for grain Fe and Zn content is one of the most feasible and cost-effective approach for combating widespread deficiency of the micronutrients. QTL controlling high grain Fe and Zn have been mapped on groups 2 and 7 chromosomes of Triticeae. The present study was initiated for precise transfers of genes for high grain Fe and Zn on group 2 and 7 chromosomes of wheat-Aegilops substitution lines to wheat cultivars using pollen radiation hybridization. The pollen radiation hybrids (PRH1) derived from 1.75 krad irradiated spikes showed the presence of univalents and multivalents in meiotic metaphase-I indicating the effectiveness of radiation dose. In the advanced generation PRH5, the plants selected with stable chromosome number and high grain Fe and Zn content were analyzed with wheat groups 2 and 7 chromosome specific intron targeted amplified polymorphism (ITAP) markers of the metal homeostasis genes to monitor the transfers of alien genes from the substituted Aegilops chromosomes. The group 2 chromosome derivatives showed the presence of NAS2, FRO2, VIT1, and ZIP2 Aegilops genes whereas the group 7 derivatives had YSL15, NAM, NRAMP5, IRO3, and IRT2 Aegilops genes. The pollen radiation hybrids of both the groups 2 and 7 chromosomes showed more than 30% increase in grain Fe and Zn content with improved yield than the elite wheat cultivar PBW343 LrP indicating small and compensating transfers of metal homeostasis genes of Aegilops into wheat.  相似文献   

5.
The chickweed (Stellaria media L.) pro-SmAMP2 gene encodes the hevein-like peptides that have in vitro antimicrobial activity against certain harmful microorganisms. These peptides play an important role in protecting the chickweed plants from infection, and the pro-SmAMP2 gene was previously used to protect transgenic tobacco and Arabidopsis plants from phytopathogens. In this study, the pro-SmAMP2 gene under control of viral CaMV35S promoter or under control of its own pro-SmAMP2 promoter was transformed into cultivated potato plants of two cultivars, differing in the resistance to Alternaria: Yubiley Zhukova (resistant) and Skoroplodny (susceptible). With the help of quantitative real-time PCR, it was demonstrated that transgenic potato plants expressed the pro-SmAMP2 gene under control of both promoters at the level comparable to or exceeding the level of the potato actin gene. Assessment of the immune status of the transformants demonstrated that expression of antimicrobial peptide pro-SmAMP2 gene was able to increase the resistance to a complex of Alternaria sp. and Fusarium sp. phytopathogens only in potato plants of the Yubiley Zhukova cultivar. The possible role of the pro-SmAMP2 products in protecting potatoes from Alternaria sp. and Fusarium sp. is discussed.  相似文献   

6.

Key message

A comprehensive comparison of LMW-GS genes between Ae. tauschii and its progeny common wheat.

Abstract

Low molecular weight glutenin subunits (LMW-GSs) are determinant of wheat flour processing quality. However, the LMW-GS gene composition in Aegilops tauschii, the wheat D genome progenitor, has not been comprehensively elucidated and the impact of allohexaploidization on the Glu-D3 locus remains elusive. In this work, using the LMW-GS gene molecular marker system and the full-length gene-cloning method, LMW-GS genes at the Glu-D3 loci of 218 Ae. tauschii and 173 common wheat (Triticum aestivum L.) were characterized. Each Ae. tauschii contained 11 LMW-GS genes, and the whole collection was divided into 25 haplotypes (AeH01–AeH25). The Glu-D3 locus in common wheat lacked the LMW-GS genes D3-417, D3-507 and D3-552, but shared eight genes of identical open reading frame (ORF) sequences when compared to that of Ae. tauschii. Therefore, the allohexaploidization induces deletions, but exerts no influence on LMW-GS gene coding sequences at the Glu-D3 locus. 92.17% Ae. tauschii had 7-9 LMW-GSs, more than the six subunits in common wheat. The haplotypes AeH16, AeH20 and AeH23 of Ae. tauschii ssp. strangulate distributed in southeastern Caspian Iran were the main putative D genome donor of common wheat. These results facilitate the utilization of the Ae. tauschii glutenin gene resources and the understanding of wheat evolution.
  相似文献   

7.
Biofortification of wheat for higher grain iron and zinc is the most feasible and cost-effective approach for alleviating micronutrient deficiency. The non-progenitor donor Aegilops species had 2–3 times higher grain iron and zinc content than the wheat cultivars, whereas the wheat–Aegilops substitution lines mostly of group 2 and 7 chromosomes had intermediate levels of grain micronutrients. The non-progenitor Aegilops species also had the highest iron content and intermediate-to-highest zinc content in straw, lower leaves, and flag leaves at the pre-anthesis, grain-filling, and maturity growth stages. The micronutrients accumulation status is followed by wheat–Aegilops substitution lines and is the least in wheat cultivars indicating that the donor Aegilops species and their substituted chromosomes possess genes for higher iron and zinc uptake and mobilization. The grain iron content was highly positively correlated with iron content in the plant tissues. Most of the lines had much higher iron and zinc content in all tissues during grain-filling period indicating higher iron and zinc uptake from soil during this stage. Although iron and zinc contents are nearly similar in grains, there was much less zinc content in the plant tissues of all the lines suggesting that the Triticeae species take up less zinc which is mobilized to grains more effectively than iron.  相似文献   

8.
9.
Three low-molecular-weight (LMW) glutenin-like genes (designated as Ssy1, Ssy2, and Ssy3) from Secale sylvestre Host were isolated and characterized. The three genes consist of a predicted highly conservative signal peptide with 20 amino acids, a short N-terminal region with 13 amino acids, a highly variable repetitive domain and a less variable C-terminal domain. The deduced amino acid sequences of the three genes were the LMW-m type due to a methionine residue at the N-terminus. The phylogenetic analysis indicated that the prolamin genes could be perfectly clustered into five groups, including HMW-GS, LMW-GS, α/β-, γ-, and κ-prolamin. The LMW glutenin-like genes of S. sylvestre were more orthologous with the LMW-GS genes of wheat and B hordein genes of barley, which also had been confirmed by the homology analysis with the LMW-GS of wheat at Glu-A3, Glu-B3, and Glu-D3 loci. These results indicated that a chromosome locus (designated as Glu-R3) might be located on the R genome of S. sylvestre with the functions similar to the Glu-3 locus in wheat and its related species.  相似文献   

10.
11.
Antimicrobial peptides (AMPs) as components of innate immunity system have been isolated from fish and other species. In this study, the crude proteins extracted with gradient ammonium sulfate precipitation technique from the processing by-products of African catfish Clarias gariepinus (C. gariepinus) were purified by size-exclusion chromatography and all the four obtained fractions, Clarias antimicrobial peptides I(CAP-I), CAP-II, CAP-III and CAP-IV, showed antimicrobial activity. Among of these fractions, CAP-IV showed the highest antimicrobial activity against Staphylococcus aureus, Aeromonas sobria, Aeromonas hydrophila, Escherichia coli by agar diffusion plate test and the diameter of inhibition zone was 8.34, 9.27, 6.76, 6.13 mm, respectively. The molecular weight of main peptides of CAP-IV was around 4.1 KD by SDS-PAGE analysis. CAP-IV showed antimicrobial activity against both gram-negative and gram-positive bacterial pathogens at minimum inhibitory concentrations (MICs) ranging from 105 to 420 μg/mL. The antimicrobial activity of CAP-IV was stable at wide pH range, 3–11 and was also heat-stable when temperature was below 80 °C. Freeze-thawing treatment also only had slight effects on the antimicrobial activity of CAP-IV. Besides, CAP-IV was not sensitive to the hydrolysis by pepsin and trypsin, except for protease K. These results suggest that CAP-IV isolated from C. gariepinus is potential to be developed as a new antimicrobial peptide and may partially explain the high disease resistance of African catfish C. gariepinus.  相似文献   

12.
Plant defensins are small and basic antimicrobial peptides characterized by conserved cysteine stabilizing structure with α-helix and triple strand antiparallel β-sheet. In the present study, two novel defensin genes, designated as BhDef1 and BhDef2, was isolated from Brassica hybrid cv Pule, a native unexplored Brassicaceae species found in Thailand. The full-length cDNA of BhDef1 and BhDef2 were 240 and 258 bp encoding a 79 and 85 amino acid residues with 29 and 25 amino acid signal peptide at N-terminal, respectively. The putative BhDef1 and BhDef2 mature proteins showed significant similarity to other Brassicaceae defensins. Their secondary structure comprises of one α-helix and a triple stranded β-sheet stabilized by four disulphide bridges of eight cysteines. BhDef1 and BhDef2 also contain a highly conserved γ-core and α-core motif exhibiting antifungal activity against Colletotrichum gloeosporioides causing anthracnose disease. Six out of eight synthetic BhDef peptide derivatives showed antibacterial activity against both gram-positive bacteria and gram-negative bacteria used in this study. BhDef14, the derivative of BhDef1, showed the highest activity against two test pathogenic bacteria. This activity could probably due to a net positively charge and alpha-helical conformation which are known as the key determinant for the bacterial membrane disruption. To our knowledge, this is the first report on defensin genes isolated from B. hybrid cv Pule. The synthetic peptides designed from their sequences showed antifungal and antibacterial activity.  相似文献   

13.
In wheat seeds, starch synthase I or the Waxy protein is an enzyme involved in amylose synthesis. The gene encoding this enzyme is Wx and in this study, eight novel Wx alleles were identified in three diploid Taeniatherum species. The variability of these alleles was evaluated, and their nucleotide sequences were compared with those of homologous alleles from wheat. Two types of Taeniatherum Wx alleles were detected in three diploid species Ta. caput-medusae, Ta. asperum, and Ta. crinitum. A phylogenetic analysis indicates that the Taeniatherum Wx alleles were more closely related to Wx alleles from Aegilops species with C, D, M, and U genomes than to Wx alleles of other species. These alleles represent a potential genetic resource that may be useful in wheat breeding programs.  相似文献   

14.

Key message

We have isolated a novel powdery mildew resistance gene in wheat that was originally introgressed from rye. Further analysis revealed evolutionary divergent history of wheat and rye orthologous resistance genes.

Abstract

Wheat production is under constant threat from a number of fungal pathogens, among them is wheat powdery mildew (Blumeria graminis f. sp. tritici). Deployment of resistance genes is the most economical and sustainable method for mildew control. However, domestication and selective breeding have narrowed genetic diversity of modern wheat germplasm, and breeders have relied on wheat relatives for enriching its gene pool through introgression. Translocations where the 1RS chromosome arm was introgressed from rye to wheat have improved yield and resistance against various pathogens. Here, we isolated the Pm17 mildew resistance gene located on the 1RS introgression in wheat cultivar ‘Amigo’ and found that it is an allele or a close paralog of the Pm8 gene isolated earlier from ‘Petkus’ rye. Functional validation using transient and stable transformation confirmed the identity of Pm17. Analysis of Pm17 and Pm8 coding regions revealed an overall identity of 82.9% at the protein level, with the LRR domains being most divergent. Our analysis also showed that the two rye genes are much more diverse compared to the variants encoded by the Pm3 gene in wheat, which is orthologous to Pm17/Pm8 as concluded from highly conserved upstream sequences in all these genes. Thus, the evolutionary history of these orthologous loci differs in the cereal species rye and wheat and demonstrates that orthologous resistance genes can take different routes towards functionally active genes. These findings suggest that the isolation of Pm3/Pm8/Pm17 orthologs from other grass species, additional alleles from the rye germplasm as well as possibly synthetic variants will result in novel resistance genes useful in wheat breeding.
  相似文献   

15.
Early flowering 3 (ELF3) is a regulator to modulate photoperiod flowering in Arabidopsis. The homologs of ELF3 in rice and barley also have been identified essential for regulation of flowering time. In the current study, TaELF3 genes, homologs of ELF3 in bread wheat (Triticum aestivum L.), were cloned by a comparative genomics approach and located on homologous group 1 chromosomes, designated as TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL, respectively. A sequence-tagged site (STS) marker was developed based on sequence polymorphism at the TaELF3-1DL locus. A quantitative trait locus (QTL) for heading date (HD) co-segregating with TaELF3-1DL explained 7.7–20.6% of the phenotypic variance in a RIL mapping population derived from the Gaocheng 8901/Zhoumai 16 cross genotyped using the wheat 90K iSelect assay. The late HD allele of TaELF3-1DL was prevalently selected in China’s specific wheat-growing regions and other countries. This study produces novel information in better understanding HD and provides a reliable functional marker for molecular marker-assisted selection in wheat breeding.  相似文献   

16.
Hepcidin represents a family of cysteine-rich antimicrobial peptides that are mainly expressed in the liver of living organisms. In this study, we have identified and characterised a novel isoform of hepcidin from the common pony fish, Leiognathus equulus (Le-Hepc). A 261-bp fragment cDNA coding for 86 amino acids was obtained. Homologous analysis showed that Le-Hepc belongs to the hepcidin super family and shares sequence identity with other known fish pre-propeptide hepcidin sequences. The ORF encodes for a 24-amino acid (aa) signal peptide coupled to a 36-aa prodomain followed by a 26-aa mature peptide. The mature peptide region has a calculated molecular weight of 2.73 kDa, a net positive charge of +2 and a theoretical pI of 8.23. Phylogenetic analysis of Le-Hepc showed a strong relationship with other fish hepcidin sequences and clustered into HAMP2 group hepcidins. Secondary structural analysis indicated that Le-Hepc mature peptide contains two antiparallel β-sheets strengthened by four disulphide bonds formed by eight conserved cysteine residues. The physicochemical properties of the peptide and its structural parameters are in agreement with characteristic features of an antimicrobial peptide. This is the first report of an antimicrobial peptide from the common pony fish, L. equulus.  相似文献   

17.
Here, we report for the first time the genome-wide identification and expression analysis of the molecular chaperone BiP genes in Citrus. Six genes encoding the conserved protein domain family GPR78/BiP/KAR2 were identified in the genome of Citrus sinensis and C. clementina. Two of them, named here as CsBiP1 and CsBiP2, were classified as true BiPs based on their deduced amino acid sequences. Alignment of the deduced amino acid sequences of CsBiP1 and CsBiP2 with BiP homologs from soybean and Arabidopsis showed that they contain all the conserved functional motifs of BiPs. Analysis of the promoter region of CsBiPs revealed the existence of cis-acting regulatory sequences involved in abiotic, heat-shock, and endoplasmic reticulum (ER) stress responses. Publicly available RNA-seq data indicated that CsBiP1 is abundantly expressed in leaf, flower, fruit, and callus, whereas CsBiP2 expression is rarely detected in any tissues under normal conditions. Comparative quantitative real-time PCR (qPCR) analysis of expression of these genes between C. sinensis grafted on the drought-tolerant “Rangpur” lime (C. limonia) and -sensitive “Flying Dragon” trifoliate orange (Poncirus trifoliata) rootstocks showed that CsBiP1 was upregulated by drought stress on the former but downregulated on the latter, whereas the CsBiP2 mRNA levels were downregulated on drought-stressed “Flying Dragon,” but remained constant on “Rangpur.” CsBiP2 upregulation was only observed in C. sinensis seedlings subjected to osmotic and cold treatments. Taken together, these results indicate the existence of two highly conserved BiP genes in Citrus that are differentially regulated in the different tissues and in response to abiotic stresses.  相似文献   

18.
RAPD analysis was used to study the intraspecific variation and phylogenetic relationships of Sgenome diploid Aegilops species regarded as potential donors of the B genome of cultivated wheat. In total, 21 DNA specimens from six S-genome diploid species were examined. On a dendrogram, Ae. speltoides and Ae. aucheri formed the most isolated cluster. Among the other species, Ae. searsii was the most distant while Ae. longissima and Ae. sharonensis were the closest species. The maximum difference between individual accessions within one species was approximately the same (0.18–0.22) in Ae. bicornis, Ae. longissima, Ae. sharonensis, and Ae. searsii. The difference between the clusters of questionable species Ae. speltoides and Ae. aucheri corresponded to the intraspecific level; the difference between closely related Ae. longissima and Ae. sharonensis corresponded to the interspecific level.  相似文献   

19.
In this work, antimicrobial peptides from Cuminum cyminum L. seeds were isolated and purified for the first time by 50% ethanol extraction, C18 reverse phase column chromatography and ion exchange chromatography for separation different peptides fraction. Then isolated fractions were characterized by Gel electrophoresis (SDS-PAGE), high-pressure liquid chromatography and the peptides components and molecular weights were determined by liquid chromatography and mass spectrometry. The extracts were tested against some strains of bacteria (E. coli and Staphylococcus aureus) and one strain of fungi (Candida albicans) using well diffusion and broth dilution assays. The extracts from C. cyminum L. seeds demonstrated a high degree of activity (some antibacterial effect) against the bacteria strains and аntifungal activity against the Candida albicans. However, the study indicates that the crude peptide extracts from C. cyminum L. seeds have promising antimicrobial and antioxidant activities that can be harnessed as leads for potential bioactive compounds.  相似文献   

20.
Antimicrobial peptides (AMPs) have attracted attentions as a novel antimicrobial agent because of their unique activity against microbes. In the present study, we described a new, previously unreported AMP, moronecidin-like peptide, from Hippocampus comes and compared its antimicrobial activity with moronecidin from hybrid striped bass. Antibacterial assay indicated that gram-positive bacteria were more sensitive to moronecidin and moronecidin-like compared with gram-negative bacteria. Furthermore, both AMPs were found to exhibit effective antifungal activity. Comparative analysis of the antimicrobial activity revealed that moronecidin-like peptide has higher activity against Acinetobacter baumannii and Staphylococcus epidermidis relative to moronecidin. Both moronecidin-like and moronecidin peptides retained their antibacterial activity in physiological pH and salt concentration. The time-killing assay showed that the AMPs completely killed A. baumannii and S. epidermidis isolates after 1 and 5 h at five- and tenfold above their corresponding MICs, respectively. Anti-biofilm assay demonstrated that peptides were able to inhibit 50% of biofilm formation at sub-MIC of 1/8 MIC. Furthermore, moronecidin-like significantly inhibited biofilm formation more than moronecidin at 1/16 MIC. Collectively, our results revealed that antimicrobial and anti-biofilm activities of moronecidin-like are comparable to moronecidin. In addition, the hemolytic and cytotoxic activities of moronecidin-like were lower than those of moronecidin, suggesting it as a potential novel therapeutic agent, and a template to design new therapeutic AMPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号