首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cysteine endopeptidases, SH-EP from Vigna mungo and EP-C1 from Phaseolus vulgaris, act to degrade seed storage protein during seed germination. Using transgenic tobacco plants, expression of SH-EP and promoter activity of the EP-C1 gene were analyzed in transgenic tobacco plants. The promoters of the two genes in tobacco seeds showed germination-specific activation, although post-translational processing of SH-EP and regulatory regions of promoter of the gene for EP-C1 were found to differ between leguminous seeds and transgenic tobacco seeds.  相似文献   

2.
3.
4.
Frey  Anne  Audran  Corinne  Marin  Elena  Sotta  Bruno  Marion-Poll  Annie 《Plant molecular biology》1999,39(6):1267-1274
Abscisic acid (ABA) is a plant hormone synthesized during seed development that is involved in the induction of seed dormancy. Delayed germination due to seed dormancy allows long-term seed survival in soil but is generally undesirable in crop species. Freshly harvested seeds of wild-type Nicotiana plumbaginifolia plants exhibit a clear primary dormancy that results in delayed germination, the degree of primary dormancy being influenced by environmental culture conditions of the mother plant. In contrast, seeds, obtained either from ABA-deficient mutant aba2-s1 plants directly or aba2-s1 plants grafted onto wild-type plant stocks, exhibited rapid germination under all conditions irrespective of the mother plant culture conditions. The ABA biosynthesis gene ABA2 of N. plumbaginifolia, encoding zeaxanthin epoxidase, was placed under the control of the constitutive 35S promoter. Transgenic plants overexpressing ABA2 mRNA exhibited delayed germination and increased ABA levels in mature seeds. Expression of an antisense ABA2 mRNA, however, resulted in rapid seed germination and in a reduction of ABA abundance in transgenic seeds. It appears possible, therefore, that seed dormancy can be controlled in this Nicotiana model species by the manipulation of ABA levels.  相似文献   

5.
6.
Commercial production of aprotinin in transgenic maize seeds   总被引:7,自引:0,他引:7  
The development of genetic transformation technology for plants has stimulated an interest in using transgenic plants as a novel manufacturing system for producing different classes of proteins of industrial and pharmaceutical value. In this regard, we report the generation and characterization of transgenic maize lines producing recombinant aprotinin. The transgenic aprotinin lines recovered were transformed with the aprotinin gene using the bar gene as a selectable marker. The bar and aprotinin genes were introduced into immature maize embryos via particle bombardment. Aprotinin gene expression was driven by the maize ubiquitin promoter and protein accumulation was targeted to the extracellular matrix. One line that showed a high level of aprotinin expression was characterized in detail. The protein accumulates primarily in the embryo of the seed. Southern blot analysis showed that the line had at least 20 copies of the bar and aprotinin genes. Further genetic analysis revealed that numerous plants derived from this transgenic line had a large range of levels of expression of the aprotinin gene (0–0.069%) of water-soluble protein in T2 seeds. One plant lineage that showed stable expression after 4 selfing generations was recovered from the parental transgenic line. This line showed an accumulation of the protein in seeds that was comparable to the best T2 lines, and the recombinant aprotinin could be effectively recovered and purified from seeds. Biochemical analysis of the purified aprotinin from seeds revealed that the recombinant aprotinin had the same molecular weight, N-terminal amino acid sequence, isoelectric point, and trypsin inhibition activity as native aprotinin. The demonstration that the recombinant aprotinin protein purified from transgenic maize seeds has biochemical and functional properties identical to its native counterpart provides a proof-of-concept example for producing new generation products for the pharmaceutical industry.  相似文献   

7.
反义trxs基因对转基因小麦种子内源trxh基因表达的影响   总被引:4,自引:0,他引:4  
以转反义硫氧还蛋白基因(anti-trxs)株系01TY70-1-17-5及其对照小麦品种‘豫麦70’为试验材料,以小麦中稳定表达的肌动蛋白基因actin为内标,用半定量反转录聚合酶链式反应(semi-QRT-PCR)方法,对转基因株系及其对照种子中trxh基因时空表达情况进行了检测。检测结果表明,花后15~30d转基因株系trxh基因转录量平均比对照下降了20.1%,花后25d显著低于对照(P<0.05);胚乳trxh基因转录量最低,平均比对照低19.4%;种子吸涨24h时间内,转基因株系trxh基因转录量较对照均略低,但差异不显著。表明,外源trxs基因的导入直接干扰了内源基因的表达。  相似文献   

8.
Expression of industrial enzymes in transgenic plants offers an alternative system to fungal fermentation for large-scale production. Very high levels of expression are required to make the enzymes cost-effective. We tested several parameters to determine the best method for achieving high levels of expression for a fungal laccase gene. Transgenic maize plants were generated using an Agrobacterium-mediated system. The molecular parameters that induced the highest expression were the maize embryo-preferred globulin 1 promoter and targeting of the protein to the cell wall. Two independent transgenic events that yielded multiple clonal plants were characterized in detail. Independent transgenic events 01 and 03 contained two or one copies of T-DNA, respectively. Plants derived from a single transgenic event varied in expression level, and the variation in expression levels was heritable. Within the seed, expression in these plants was primarily within the embryo, and was associated with seed browning and limited germination. High oil germplasm was used to increase germination, as well as to assist in increasing expression 20-fold in five generations through breeding and selection.  相似文献   

9.
Abstract Many populations of herbaceous perennial plants contain seeds stored in a soil seed bank. The contribution of seeds to population persistence is an important parameter in population models but germination rates of known‐age seeds are difficult to obtain because individual seeds cannot easily be followed. Although Trachymene incisa Rudge plants produce copious seeds that are dispersed into the soil, the existence of a seed bank has not been confirmed. To quantify the potential for a seed bank fresh seeds of T. incisa were sown into experimental seed banks in the eucalypt‐dominated Agnes Banks Woodland in western Sydney, NSW. A recent fire provided the opportunity to compare germination in the burnt and unburnt vegetation. Density of seed sowing and time of maturation/dispersal of seeds were manipulated in 75 seed cages. Emergence of seeds after 5 months was significantly higher for the earliest planting date but after 1 year, germination of seeds planted in the later weeks increased, and the final germination for all weeks was 28%. Density of sowing and the recent fire did not affect emergence. A second experiment planted over a broader time span (9 weeks instead of 3 weeks) confirmed the effect of planting date but also found significant spatial variation on a scale of tens of metres. Laboratory germination rates of over 70% confirmed that the seeds were viable and non‐dormant when sown in the field cages. The carry‐over of non‐germinated seed in the soil seed bank is estimated to be about 70% after 2 years, implying that a cohort of seeds would not be depleted through germination alone for up to 40 years. The potential for a long‐lived seed bank in this species is interesting because the plants are also capable of resprouting from their rootstock after fire, giving them characteristics of both resprouters and seeders.  相似文献   

10.
To see the effects of foreign gene introduction on the physiological performance and the quality and quantity of seed lipids, we studied transgenic tobacco plant as a model system, as tobacco seeds are oil seeds. Using Agrobacterium Ti plasmid based vectors, tobacco plants cv Petit Havana were transformed by NPT II gene as selectable marker. Transformed T0 generation plants raised in tissue culture were transferred to pots and selfed. From the seeds, T1 generation plants were grown in pots and their physiological performance was assessed. The transgenic plants showed slightly slower rates of germination and growth. Total chlorophyll content, chlorophyll a/b ratio and specific leaf weight, however, remained unchanged. The transgenic plants also had delayed flowering. However, total protein, lipid content and fatty acid composition of lipids of seeds in transgenic plants did not show appreciable difference from the seeds from control plants. Thus the physiological cost of transgenic plant for the extra genetic load was only marginal, if any.  相似文献   

11.
Phytoene synthase catalyzes the dimerization of two molecules of geranylgeranyl pyrophosphate to phytoene and has been shown to be rate limiting for the synthesis of carotenoids. To elucidate if the capacity to produce phytoene is limiting also in the seed of Arabidopsis (Wassilewskija), a gene coding for an endogenous phytoene synthase was cloned and coupled to a seed-specific promoter, and the effects of the overexpression were examined. The resulting transgenic plants produced darker seeds, and extracts from the seed of five overexpressing plants had a 43-fold average increase of beta-carotene and a total average amount of beta-carotene of approximately 260 microg g-1 fresh weight. Lutein, violaxanthin, and chlorophyll were significantly increased, whereas the levels of zeaxanthin only increased by a factor 1.1. In addition, substantial levels of lycopene and alpha-carotene were produced in the seeds, whereas only trace amounts were found in the control plants. Seeds from the transgenic plants exhibited delayed germination, and the degree of delay was positively correlated with the increased levels of carotenoids. The abscisic acid levels followed the increase of the carotenoids, and plants having the highest carotenoid levels also had the highest abscisic acid content. Addition of gibberellic acid to the growth medium only partly restored germination of the transgenic seeds.  相似文献   

12.
Background and AimsSeed dormancy determines the environmental niche of plants in seasonal environments, and has consequences for plant performance that potentially go far beyond the seed and seedling stages. In this study, we examined the cascading effects of seed dormancy on the expression of subsequent life-history traits and fitness in the annual herb Arabidopsis thaliana.MethodsWe planted seeds of >200 recombinant inbred lines (RILs) derived from a cross between two locally adapted populations (Italy and Sweden), and both parental genotypes at the native site of the Swedish population in three consecutive years. We quantified the relationship between primary seed dormancy and the expression of subsequent life-history traits and fitness in the RIL population with path analysis. To examine the effects of differences in dormancy on the relative fitness of the two parental genotypes, we planted dormant seeds during the seed dispersal period and non-dormant seeds during the germination period of the local population.Key ResultsIn the RIL population, strong primary dormancy was associated with high seedling survival, but with low adult survival and fecundity, and path analysis indicated that this could be explained by effects on germination timing, rosette size and flowering start. The relationship between primary seed dormancy and germination proportion varied among years, and this was associated with differences in seasonal changes in soil moisture. The planting of dormant and non-dormant seeds indicated that the lower primary dormancy of the local Swedish genotype contributed to its higher germination proportion in two years and to its higher fecundity in one year.ConclusionsOur results show that seed dormancy affects trait expression and fitness components across the life cycle, and suggest that among-year variation in the incidence of drought during the germination period should be considered when predicting the consequences of climatic change for population growth and evolution.  相似文献   

13.
Transgenes introduced into crops can escape in time, as well as space, via the seed bank. For annual plants, especially ruderals, seed bank behaviour may be the most important factor determining population persistence. Crop seeds may exhibit some dormancy and germination cueing in the soil but are expected to be less able to persist than their wild relatives, which often have considerable dormancy and longevity, as well as effective germination cueing responses. Crop-wild hybrids may have seed bank characteristics more suited to persistence, and maternal effects may favour persistence of hybrids having wild plants for their female parent. Escape of transgenes via crop-wild hybrids presents unique concerns not present for crops. Hybrids can undergo natural selection and may back-cross with wild plants. We suggest methods that can be used in conjunction with evaluation of the relative fitness of crop-wild hybrids that will determine the likelihood of back-crossing. Accurate assessment of escape in time and transgene persistence via crop-wild hybrids requires proper plant materials. We emphasize the use of null segregants as controls for transgenic crops and for generating crop-wild hybrid controls for transgenic hybrids. Since good empirical and theoretical understanding of how individual genes influence the fate of plants in different environments is lacking, evaluation of escape in time and the persistence of transgenes via crop-wild hybrids should be on a case-by-case basis.  相似文献   

14.
Delayed seed germination is considered to be a bet-hedging strategy, but experimental evidence of its adaptive role as an inherited trait is still lacking. In each of two co-occuring annual grass species, populations of Mediterranean and desert origin were studied during three consecutive years for population demography and seed germination in the reciprocally introduced experimental soil seed banks. The two environments strikingly differed in productivity (annual rainfall) and predictability (variation in amount and timing of annual rainfall). The two species exhibited highly similar pattern of seed size and dormancy across the two environments. In both species, a higher proportion of dormant seeds was observed at the desert location and for the seeds of desert origin, consistent with bet-hedging buffering against unpredictability of rainfall and high probability of drought in this environment. In addition, in both species seed mass was significantly less in plants of desert origin than in plants of Mediterranean origin. The two environments differed in demographic consequences of temporal variation in precipitation. In the Mediterranean population, even in the year of least precipitation, adults grew to maturity and seeds were produced. These seeds served to maintain population size. In contrast, in the desert population, in the year of least rainfall no seedlings survived to maturity and the soil seed bank was the only source of population persistence. Altogether, the results concur with predicted by adaptive bet hedging importance of delayed germination under marginal precipitation.  相似文献   

15.
Phytocystatins are cysteine proteinase inhibitors in plants that are implicated in the endogenous regulation of protein turnover and defense mechanisms against insects and pathogens. A cDNA encoding a phytocystatin called AtCYS6 (Arabidopsis thaliana phytocystatin6) has been isolated. We show that AtCYS6 is highly expressed in dry seeds and seedlings and that it also accumulates in flowers. The persistence of AtCYS6 protein expression in seedlings was promoted by abscisic acid (ABA), a seed germination and post-germination inhibitory phytohormone. This finding was made in transgenic plants bearing an AtCYS6 promoter–β-glucuronidase (GUS) reporter construct, where we found that expression from the AtCYS6 promoter persisted after ABA treatment but was reduced under control conditions and by gibberellin4+7 (GA4+7) treatment during the germination and post-germinative periods. In addition, constitutive over-expression of AtCYS6 retarded germination and seedling growth, whereas these were enhanced in an AtCYS6 knock-out mutant (cys6-2). Additionally, cysteine proteinase activities stored in seeds were inhibited by AtCYS6 in transgenic Arabidopsis. From these data, we propose that AtCYS6 expression is enhanced by the germination inhibitory phytohormone ABA and that it participates in the control of germination rate and seedling growth by inhibiting the activity of stored cysteine proteinases.  相似文献   

16.
17.
18.
以转反义硫氧还蛋白基因株系01TY34-73-9及其对照品种‘豫麦34’为材料,运用PCR检测和酶活性测定的方法,对转基因株系遗传稳定性以及转基因与对照种子中脱支酶活性进行测定。结果显示:(1)外源基因已经稳定遗传至后代;(2)转基因种子在不同成熟时期和不同萌发过程中的脱支酶活性与对照相比均有不同程度的降低平均降低10.3%,但仅花后25 d到收获后5 d脱支酶活性显著低于对照,其中最低值出现在花后30 d,平均比对照下降了12.0%;(3)在花后30 d和后熟5 d萌发过程中,转基因种子脱支酶活性始终低于对照,平均下降6.2%和22.2%。表明反义trxs基因的导入干扰了小麦trxh基因的表达,使trxh转录量减少,小麦籽粒中脱支酶的活性受抑。  相似文献   

19.
20.
Soil seed banks act as a gene pool for local plant species and, as such, can buffer local populations, especially those experiencing challenging environmental conditions. Seed dormancy has important implications to dynamics of soil seed banks. Therefore, estimating the seed dormancy of transgenic crop–wild hybrids could shed light on the persistence of transgenes in wild‐plant soil seed banks. Individuals from eight populations of wild rice Oryza rufipogon were crossed with those of three insect‐resistant transgenic rice lines. Selfed (F2–F4) and backcrossed populations (BC1, BC1F2 and BC1F3) were then made from the hybrids. Seed germination was tested under three treatments: (a) normal; (b) overwintering in soil; and (c) one‐week heat‐shocking. The effects of transgene, wild parent and hybrid generation on hybrid seed germination were examined. No significant effect of insect‐resistant transgenes (Bt and CpTI) was detected on the seed dormancy of crop–wild hybrids, while a significant wild parent effect was found. The seeds of advanced generation hybrids have higher germination percentages and lower dormancy than do those of F1 and BC1 generations. The study showed that the dormancy of hybrid seeds was determined mainly by their genetic backgrounds. All hybrid seeds have higher germination percentages and lower dormancy (and, consequently, a poorer overwintering ability), compared with wild seeds, and reduce dormancy would contribute to a fitness disadvantage, compared with wild types. Therefore, such seeds might form part of naturally occurring soil seed banks, through which crop genes would persist in wild populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号