首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have isolated 44 SSRs from an AC‐enriched genomic library from almond (Prunus amygdalus Batsch.). Twenty SSRs were screened for their polymorphism in 16 cultivars and for their transportability in seven different Prunus species (peach, nectarine, apricot, European plum, Japanese plum, sweet cherry, sour cherry) and in apple. The expected heterozygosity ranged from 0.62 to 0.89. About 30% of primers gave successful amplification in seven different Prunus species; in two cases amplifications were obtained also in apple.  相似文献   

2.
The aim of this study was to identify the group of highly polymorphic microsatellite markers for identification of promising sour cherries. From among 30 tested microsatellite (SSR) markers, 19 were selected to profile genetic variation in sour cherries due to high polymorphisms. Results indicated a high level of polymorphism of the accessions based on these markers. Totally 148 alleles were generated at 19 SSR loci which 122 alleles were polymorphic. The number of total alleles per locus ranged from 2 to 15 with an average of 7.78 and polymorphism percentage varied from 50 to 100% with an average of 78.76%. Also, PIC varied from 0.47 to 0.89 with an average of 0.79 and heterozygosity ranged from 0.35 to 0.55 with a mean of 0.45. According to these results, these markers specially PMS3, PS12A02, PceGA34, BPPCT021, EMPA004, EMPA018, and Pchgms3 produced good and various levels of amplifications and showed high heterozygosity levels. By the way, the genetic similarity showed a high diversity among the sour cherries. Cluster analysis separated improved cultivars from promising sour cherries, and the PCoA supported the cluster analysis results. Since the studied sour cherries were superior to the improved cultivars and were separated from them in most groups, these sour cherries can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that the set of microsatellite markers employed in this study demonstrated usefulness of microsatellite markers for the identification of sour cherry genotypes.  相似文献   

3.
We report 99 simple sequence repeats (SSRs) newly isolated from an apricot (Prunus armeniaca L.) genomic library enriched for AG/CT repeats. Twenty SSRs were screened for their polymorphism in 16 apricot cultivars. The number of alleles ranged from two to nine, whereas the expected heterozygosity (HE) ranged from 0.26 to 0.82. The same SSRs showed also an appreciable transportability across different Prunus species, such as peach, nectarine, almond, European plum, Japanese plum, sweet cherry and sour cherry, with 20% of primers giving successful amplifications in all Prunus species assayed. None gave amplification in apple.  相似文献   

4.
. Gametophytic self-incompatibility (GSI) typically "breaks down" due to polyploidy in many Solanaceous species, resulting in self-compatible (SC) tetraploid individuals. However, sour cherry (Prunus cerasus L.), a tetraploid species resulting from hybridization of the diploid sweet cherry (P. avium L.) and the tetraploid ground cherry (P. fruticosa Pall.), is an exception, consisting of both self-incompatible (SI) and SC individuals. Since sweet cherry exhibits GSI with 13 S-ribonucleases (S-RNases) identified as the stylar S-locus product, the objectives were to compare sweet and sour cherry S-allele function, S-RNase sequences and linkage map location as initial steps towards understanding the genetic basis of SI and SC in sour cherry. S-RNases from two sour cherry cultivars that were the parents of a linkage mapping population were cloned and sequenced. The sequences of two S-RNases were identical to those of sweet cherry S-RNases, whereas three other S-RNases had unique sequences. One of the S-RNases mapped to the Prunus linkage group 6, similar to its location in sweet cherry and almond, whereas two other S-RNases were linked to each other but were unlinked to any other markers. Interspecific crosses between sweet and sour cherry demonstrated that GSI exists in sour cherry and that the recognition of common S-alleles has been maintained in spite of polyploidization. It is hypothesized that self-compatibility in sour cherry is caused by the existence of non-functional S-RNases and pollen S-genes that may have arisen from natural mutations.  相似文献   

5.
Thirty-six sour (Prunus cerasus L.), sweet (P. avium L.), and ground cherry (P. fruticosa Pall.) selections were evaluated for seven enzyme systems and principal coordinate analysis was used to examine isozyme divergence among these cherry species. The enzyme systems studied were phosphoglucose isomerase (PGI), isocitrate dehydrogenase (IDH), phosphoglucomutase (PGM), 6-phosphogluconate dehydrogenase (6-PGD), leucine aminopeptidase (LAP), shikimate dehydrogenase (SKDH), and malate dehydrogenase (MDH). The first principal coordinate, which accounted for 41% of the total variation, separated the diploid sweet cherry selections from the sour, ground, and sour x ground cherry tetraploids. An additional 86 selections were evaluated for up to six of the enzyme systems to determine the polymorphisms at the enzyme loci and the level of heterozygosity between the diploid sweet cherry and the tetraploid species and interspecific hybrids. 6-PGD was the most polymorphic enzyme exhibiting 16 patterns. The tetraploid cherry species were more heterozygous than the diploid sweet cherry with an average heterozygosity of 78% compared to 19% for the diploids.  相似文献   

6.
Nitrate reductase was found in leaves of apricot Prunus armeniaca, sour cherry P. cerasus, sweet cherry P. avium, and plum P. domestica, but not in peach P. persica, from trees grown in sand culture receiving a nitrate containing nutrient solution. Nitrate was found in the leaves of all species. Nitrate and nitrate reductase were found in leaves of field-grown apricot, sour cherry, and plum trees. The enzyme-extracting medium contained insoluble polyvinylpyrrolidone, and including dithiothreitol or mercaptobenzothiazole did not improve enzyme recovery. Inclusion of cherry leaf extract diminished, and peach leaf extract abolished, recovery of nitrate reductase from oat tissue. Low molecular weight phenols liberated during extraction were probably responsible for inactivation of the enzyme. The enzyme from apricot was two to three times as active as from the other species. Both nicotine adenine diphosphopyridine nucleotide and flavin mononucleotide were effective electron donors. The enzyme was readily induced in apricot leaves by 10 mm nitrate supplied through the leaf petiole.  相似文献   

7.
A survey was made to determine the incidence of phytoplasmas in 39 sweet and sour cherry, peach, nectarine, apricot and plum commercial and experimental orchards in seven growing regions of Poland. Nested polymerase chain reaction (PCR) using the phytoplasma‐universal primer pairs P1/P7 followed by R16F2n/R16R2 showed the presence of phytoplasmas in 29 of 435 tested stone fruit trees. The random fragment length polymorphism (RFLP) patterns obtained after digestion of the nested PCR products separately with RsaI, AluI and SspI endonucleases indicated that selected Prunus spp. trees were infected by phytoplasmas belonging to three different subgroups of the apple proliferation group (16SrX‐A, ‐B, ‐C). Nucleotide sequence analysis of 16S rDNA fragment amplified with primers R16F2n/R16R2 confirmed the PCR/Restriction Fragment Length Polymorphism (RFLP) results and revealed that phytoplasma infecting sweet cherry cv. Regina (Reg), sour cherry cv. Sokowka (Sok), apricots cv. Early Orange (EO) and AI/5, Japanese plum cv. Ozark Premier (OzPr) and peach cv. Redhaven (RedH) was closely related to isolate European stone fruit yellows‐G1 of the ‘Candidatus Phytoplasma prunorum’ (16SrX‐B). Sequence and phylogenetic analyses resulted in the highest similarity of the 16S rDNA fragment of phytoplasma from nectarine cv. Super Queen (SQ) with the parallel sequence of the strain AP15 of the ‘Candidatus Phytoplasma mali’ (16SrX‐A). The phytoplasma infecting sweet cherry cv. Kordia (Kord) was most similar to the PD1 strain of the ‘Candidatus Phytoplasma pyri’ (16SrX‐C). This is the first report of the occurrence of ‘Ca. P. prunorum’, ‘Ca. P. mali’ and ‘Ca. P. pyri’ in naturally infected stone fruit trees in Poland.  相似文献   

8.
Twenty‐one expressed sequence tag–simple sequence repeat (EST–SSR) markers were developed in peach from a mesocarp cDNA library. Eighteen of them gave successful amplification in 22 peach genotypes and produced one to three alleles each with an average of 1.8 alleles per locus. The average value of expected and observed heterozygosities was 0.24 and 0.20, respectively. All the primers gave successful amplification in other six Prunus species (almond, apricot, sweet cherry, Japanese plum, European plum and Prunus ferganensis).  相似文献   

9.
Cherry leaf spot (CLS), caused by the fungal pathogen Blumeriella jaapii (Rehm) Arx (telomorph Phloeosporella padi [Lib.] Arx), is a major disease in all humid cherry-growing regions worldwide causing leaf yellowing and defoliation. The diploid Prunus species, P. canescens, had previously been identified as a source of CLS resistance. Therefore, the objective of this study was to identify quantitative trait loci (QTL) for CLS resistance derived from P. canescens in both diploid sweet cherry (P. avium) and tetraploid sour cherry (P. cerasus). Because of the simpler genetics of diploid cherry, the initial investigation was done with P. canescens-derived materials from crosses with sweet cherry, followed by validation using P. canescens-derived plant materials from sour cherry. A major QTL controlling P. canescens-derived CLS resistance, named CLSR_G4, was identified on linkage group 4 in sweet cherry and validated in sour cherry. All CLS-resistant individuals had one P. canescens-derived allele for CLSR_G4. A second QTL may be necessary for CLS resistance as one-fifth–one-third of the progeny individuals with the P. canescens-derived allele for CLSR_G4 were susceptible.  相似文献   

10.
Chokecherry (Prunus virginiana L.) (2n?=?4x?=?32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8?Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100?bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2?%) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7?% of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2?% of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.  相似文献   

11.
The aim of this study was to characterize 23 important Iranian sweet cherry (Prunus avium) cultivars collected from different provinces of Iran and 1 foreign cultivar, which was used as control, considered for breeding programs by using 21 microsatellite markers and 27 morphological traits. In sweet cherry (Prunus avium) accessions, leaf, fruit, and stone morphological characters were evaluated during two consecutive years. The study revealed a high variability in the set of evaluated sweet cherry accessions. The majority of important correlations were determined among variables representing fruit and leaf size and variables related to color. Cluster analysis distinguished sweet cherry accessions into two distinct groups. Principal component analysis (PCA) of qualitative and quantitative morphological parameters explained over 86.59% of total variability in the first seven axes. In PCA, leaf traits such as leaf length and width, and fruit traits such as length, width, and weight, and fruit flesh and juice color were predominant in the first two components, indicating that they were useful for the assessment of sweet cherry germplasm characterization. Out of 21 SSR markers, 16 were polymorphic, producing 177 alleles that varied from 4 to 16 alleles (9.35 on average) with a mean heterozygosity value of 0.82 that produced successful amplifications and revealed DNA polymorphisms. Allele size varied from 95 to 290 bp. Cluster analyses showed that the studied sweet cherry genotypes were classified into five main groups based mainly on their species characteristics and SSR data. In general, our results did not show a clear structuring of genetic variability within the Iranian diffusion area of sweet cherry, so it was not possible to draw any indications on regions of provenance delimitation. The results of this study contribute to a better understanding of sweet cherry genetic variations in Iran, thus making for more efficient programs aimed at preserving biodiversity and more rational planning of the management of reproductive material.  相似文献   

12.
Host preference of the plum curculio   总被引:1,自引:0,他引:1  
We assessed host preference of adult plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae), based on the total number of mark‐released and wild adults recovered and the total distance moved by mark‐released adults in an orchard whose layout was designed to specifically allow foraging plum curculios to choose among host tree species. Host trees included apple, Malus domestica Borkh.; pear, Pyrus communis (L.); peach, Prunus persica (L.) Batsch; apricot, Prunus armeniaca L.; tart cherry, Prunus cerasus L.; sweet cherry, Prunus avium (L.); European plum, Prunus domestica L.; and Japanese plum, Prunus salicina Lindl. (all Rosaceae). We released 2900 marked adults and recovered 17.7%. We used screen traps to provide a measure of the number of adults that arrived at and climbed up particular host trees and found that significantly greater numbers of marked adults and the greatest number of wild adults were recovered from screen traps attached to Japanese plum. We sampled host tree canopies by tapping limbs to provide a measure of the number of adults within a tree canopy at a particular moment. Again, significantly greater numbers of marked and wild adults were recovered from plum species, with no difference between Japanese and European plum cultivars for marked individuals, but with significantly greater numbers of wild individuals recovered from Japanese plum. The preference index (PI) for Japanese plum based on total distances moved by all marked adults recovered on Japanese plum divided by the total distance moved by marked adults recovered on other host trees indicated that Japanese plum was the most highly preferred host, followed by European plum, peach, sweet cherry, tart cherry, apricot, apple, and pear, respectively.  相似文献   

13.
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model ??diploid embryogenic callus protoplast?+?diploid mesophyll-derived protoplast??. Protoplasts were isolated from embryogenic calli of ??Pera?? and ??Westin?? sweet orange cultivars (Citrus sinensis) and from young leaves of ??Fremont??, Nules??, and ??Thomas?? mandarins (C. reticulata), and ??Nova?? tangelo [C. reticulata?×?(C. paradisi?×?C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when ??Pera?? sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of ??Pera?? sweet orange?+???Fremont?? mandarin, 3 ??Pera?? sweet orange?+???Nules?? mandarin, and 2 ??Pera?? sweet orange?+???Nova?? tangelo, and all the diploid regenerated plants showed the ??Pera?? sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96?h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.  相似文献   

14.
High-throughput genome scans are important tools for genetic studies and breeding applications. Here, a 6K SNP array for use with the Illumina Infinium® system was developed for diploid sweet cherry (Prunus avium) and allotetraploid sour cherry (P. cerasus). This effort was led by RosBREED, a community initiative to enable marker-assisted breeding for rosaceous crops. Next-generation sequencing in diverse breeding germplasm provided 25 billion basepairs (Gb) of cherry DNA sequence from which were identified genome-wide SNPs for sweet cherry and for the two sour cherry subgenomes derived from sweet cherry (avium subgenome) and P. fruticosa (fruticosa subgenome). Anchoring to the peach genome sequence, recently released by the International Peach Genome Initiative, predicted relative physical locations of the 1.9 million putative SNPs detected, preliminarily filtered to 368,943 SNPs. Further filtering was guided by results of a 144-SNP subset examined with the Illumina GoldenGate® assay on 160 accessions. A 6K Infinium® II array was designed with SNPs evenly spaced genetically across the sweet and sour cherry genomes. SNPs were developed for each sour cherry subgenome by using minor allele frequency in the sour cherry detection panel to enrich for subgenome-specific SNPs followed by targeting to either subgenome according to alleles observed in sweet cherry. The array was evaluated using panels of sweet (n = 269) and sour (n = 330) cherry breeding germplasm. Approximately one third of array SNPs were informative for each crop. A total of 1825 polymorphic SNPs were verified in sweet cherry, 13% of these originally developed for sour cherry. Allele dosage was resolved for 2058 polymorphic SNPs in sour cherry, one third of these being originally developed for sweet cherry. This publicly available genomics resource represents a significant advance in cherry genome-scanning capability that will accelerate marker-locus-trait association discovery, genome structure investigation, and genetic diversity assessment in this diploid-tetraploid crop group.  相似文献   

15.
Simple sequence repeats (SSRs) are genome domains located in both coding and non-coding regions in eukaryotic genomes. Although SSRs are often characterized by low polymorphism, their DNA-flanking sequences could be a useful source of DNA markers, which could help in genetic studies and breeding because they are associated with genes that control traits of interest. In this study, 56 genotypes from different Prunus species were used, including peach, apricot, plum, and almond (already phenotyped for several agronomical traits, including self-compatibility, flowering and ripening time, fruit type, skin and flesh color, and shell hardness). These Prunus genotypes were molecularly characterized using 28 SSR markers developed in exons, introns, and intergenic regions. All these genes were located in specific regions where quantitative trait loci (QTLs) for certain fruit quality traits were also located, including flowering and ripening times and fruit flesh and skin color. A sum of 309 SSR alleles were identified in the whole panel of analyzed cultivars, with expected heterozygosity values of 0.61 (upstream SSRs), 0.17 (exonic SSRs), 0.65 (intronic SSRs), and 0.58 (downstream SSRs). These values prove the low level of polymorphism of the exonic (gene-coding regions) markers. Cluster and structural analysis based on SSR data clearly differentiated the genotypes according to either specie (for the four species) and pedigree (apricot) or geographic origin (Japanese plum). In addition, some SSR markers mainly developed in intergenic regions could be associated with genes that control traits of interest in breeding and could therefore help in marker-assisted breeding. These findings highlight the importance of using molecular markers able to discriminate between the functional roles of the gene allelic variants.  相似文献   

16.
Prunus necrotic ringspot virus (PNRSV) was detected in almonds, plum and apricot germplasm accessions and local almond cultivars in Israel. PNRSV was widespread both in wild and cultivated almond trees and uncommon in wild apricots and plums. The possible variation among the PNRSV isolates was initially evaluated by restriction analysis of PCR products representing the CP gene with the endonuclease RsaI and followed by nucleotide sequence analysis of selected isolates. It was concluded that all 13 isolates belong to group PV96, the largest cluster of PNRSV isolates, described previously. Two PNRSV isolates, one from a plum accession and one from an almond cultivar, were found to be distinct members of group PV96 with unique nucleotide modifications not found in other documented isolates of this virus. However, no PNRSV isolate typical to a specific host and/or to the Middle East region could be identified. This study expands the body of data on variability of PNRSV isolates and highlights the importance of assessing the virus status of germplasm collections by applying reliable diagnostic and differentiating methods.  相似文献   

17.
Sweet and sour cherries are two economically important species in the world. The capability to distinguish among cherry genotypes in breeding, cultivation and germplasm collection is extremely important for scientific as well as economic reasons. In the present research, sixteen simple sequences repeat (SSR) loci were used to estimate the relationships among sweet, sour, duke and wild cherries. All of the SSR markers showed high transferability across the studied species that allowed us to study genetic diversity in them. Totally 96 alleles were generated with SSR loci, of which 93 were found polymorphic with 97.57 % polymorphism. Values of genetic similarity between genotypes varied from 0.16 to 0.97 which indicated high level of genetic diversity. On the basis of their genetic similarities, SSR analysis allowed to group the genotypes into three main clusters according to their species. These results have an important implication for cherry germplasm characterization, improvement, and conservation.  相似文献   

18.
We report the sequence of 41 primer pairs of microsatellites from a CT-enriched genomic library of the peach cultivar 'Merrill O'Henry'. Ten microsatellite-containing clones had sequences similar to plant coding sequences in databases and could be used as markers for known functions. For microsatellites segregating at least in one of the two Prunus F(2) progenies analyzed, it was possible to demonstrate Mendelian inheritance. Microsatellite polymorphism was evaluated in 27 peach and 21 sweet cherry cultivars. All primer pairs gave PCR-amplification products on peach and 33 on cherry (80.5%). Six PCR-amplifications revealed several loci (14.6%) in peach and eight (19.5%) in sweet cherry. Among the 33 single-locus microsatellites amplified in peach and sweet cherry, 13 revealed polymorphism both in peach and cherry, 19 were polymorphic only on peach and one was polymorphic only on cherry. The number of alleles per locus ranged from 1 to 9 for peach and from 1 to 6 on sweet cherry with an average of 4.2 and 2.8 in peach and sweet cherry, respectively. Cross-species amplification was tested within the Prunus species: Prunus avium L. (sweet cherry and mazzard), Prunus cerasus L. (sour cherry), Prunus domestica L. (European plum), Prunus amygdalus Batsch. (almond), Prunus armeniaca L. (apricot), Prunus cerasifera Ehrh. (Myrobalan plum). Plants from other genera of the Rosaceae were also tested: Malus (apple) and Fragaria (strawberry), as well as species not belonging to the Rosaceae: Castanea (chestnut tree), Juglans (walnut tree) and Vitis (grapevine). Six microsatellites gave amplification on all the tested species. Among them, one had an amplified region homologous to sequences encoding a MADS-box protein in Malus x domestica. Twelve microsatellites (29.3%) were amplified in all the Rosaceae species tested and 31 (75.6%) were amplified in all the six Prunus species tested. Thirty three (80.5%), 18 (43.9%) and 13 (31.7%) gave amplification on chestnut tree, grapevine and walnut tree, respectively.  相似文献   

19.
We report 47 new simple sequence repeats (SSRs) obtained from a CT/AG enriched genomic library of almond cv. Texas (syn. Mission). Forty‐two of them were polymorphic in a sample of eight almond cultivars and 31 of these were single‐locus. The average values of the number of alleles per locus (6.6), and mean observed (65%) and expected (76%) heterozygosities for these 31 SSRs indicated a high level of variability. All cultivars studied could be individually identified using any one of the five SSRs. Transportability to other Prunus species (peach, sweet cherry, Japanese plum and apricot) was also high (83–100%).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号