首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Salinity stress is one of the major abiotic stresses affecting plant growth and productivity globally. In order to improve the yields of plants growing under salt stress bear remarkable importance to supply sustainable agriculture. Acclimation of plants to salinized condition depends upon activation of cascade of molecular network involved in stress sensing/perception, signal transduction, and the expression of specific stress-related genes and metabolites. Isolation of salt overly sensitive (SOS) genes by sos mutants shed us light on the relationship between ion homeostasis and salinity tolerance. Regulation of antioxidative system to maintain a balance between the overproduction of reactive oxygen species and their scavenging to keep them at signaling level for reinstating metabolic activity has been elucidated. However, osmotic adaptation and metabolic homeostasis under abiotic stress environment is required. Recently, role of phytohormones like Abscisic acid, Jasmonic acid, and Salicylic acid in the regulation of metabolic network under osmotic stress condition has emerged through crosstalk between chemical signaling pathways. Thus, abiotic stress signaling and metabolic balance is an important area with respect to increase crop yield under suboptimal conditions. This review focuses on recent developments on improvement in salinity tolerance aiming to contribute sustainable plant yield under saline conditions in the face of climate change.  相似文献   

2.
Salinity is the second most prevalent abiotic stress faced by plants, and rice is not an exception. Through this study, it has been tried upon, to study the relative salinity tolerance of eight local varieties of North East India. Preliminary screening was based on their dose- and time-dependent physiological responses to salinity stress. Among the cultivars, Tampha was found to be relatively more tolerant, whereas MSE9 the most sensitive. To further ascertain their tolerance capacity, MDA and H2O2 content was determined, which also confirmed the tolerance level of the two cultivars. Histochemical assays for root plasma membrane integrity and leaf and root H2O2 and O2 ? content also showed more damage in Tampha in comparison to MSE9. Finally, gene expression analysis for Na+/K+ co-transporters, OsHKT2;1, OsHKT2;3 and OsHKT2;4, was performed to observe how the expression level of these transporters varies with the tolerance capacity of these two cultivars in leaves and roots under different time frames. The study reveals Tampha to be the most tolerant and MSE9 the most sensitive when compared to the other six screened cultivars for salinity stress.  相似文献   

3.
4.
Lavee S  Galston AW 《Plant physiology》1968,43(11):1760-1768
Explants of tobacco pith taken at various distances from the apex of a mature stem show a sharp gradient in growth potential in vitro; growth is highest in the extreme apical and basal explants, and is minimal in explants removed ca. 75 cm from the apex. Calluses produced by the vigorously growing basal explants are harder and more compact than those produced from more apical explants. The gradient in growth potential is directly correlated with gradients in RNA, protein of cell sap and soluble N per unit fresh weight, but is inversely correlated with peroxidase activity. Cell size increases from apex to base of plants.

The peroxidase activity of pith explants is electrophoretically resolvable into 2 isoperoxidases, moving anodically at pH 9.0. During in vitro culture, this activity rises, due to the formation of several new isozymes moving toward the cathode. The appearance of these isozymes occurs most rapidly in apical and extreme basal explants.

  相似文献   

5.
6.
7.

Key message

Depending on salt concentrations, different mechanisms are involved in the tolerance of pistachio and an acclimation to salinity conditions occurs in the leaves that develop in the presence of salt.

Abstract

Pistachio (Pistacia vera L.) is a salt tolerant species that is considered an alternative crop for cultivation in salinzied orchard soils. In this work, 12-week-old pistachio seedlings cultivated in soil under greenhouse conditions were treated with five levels of salinity including control (0.63 dSm?1), low (2 and 4 dSm?1) and high (8 and 10 dSm?1) salt concentrations for further 12 weeks. Plant growth parameters were not affected by mild salinity; a significant reduction was only observed from 8 dSm?1. Considerable differences were observed between the young and mature leaves regarding osmotic and ionic stress effects of salt. Main compatible solutes were proline in mature leaves, proline and soluble sugars in young leaves, and soluble sugars and amino acids, other than proline, in roots. Concentration and content of Na in the leaves were not significantly increased at low levels of salinity and the K:Na and Ca:Na ratio of leaves were affected only by higher salt concentrations. Using the sequential extraction procedure for cell wall isolation, we observed that both absolute and relative amounts of Na in the cell wall fraction increased under low salinity, while decreased under higher levels of salt supply. Stable water relations, photochemistry and CO2 assimilation rates particularly of young leaves, as well as ion homeostasis were mechanisms for maintenance of plants growth under mild salinity. Under severe saline conditions, the impaired ability of mature leaves for synthesis of assimilates, preferent allocation of carbohydrates to roots for maintenance of osmotic homeostasis and finally, reduction of protein synthesis caused growth inhibition in pistachio.  相似文献   

8.
When the proper stimuli are given, somatic plant cells may form adventitious embryos, roots or shoots. The three pathways of regeneration show apparent similarities. They consist of three analogous phases: 1) dedifferentiation (during which the tissue becomes competent to respond to the organogenic/embryogenic stimulus), 2) induction (during which cells become determined to form either a root, a shoot or an embryo), and 3) realization (outgrowth to an organ or an embryo). The first phase may involve a period of callus growth (indirect regeneration), but often cells present in the explant become competent without cell division or without cell division at a large scale (direct regeneration). In an explant, only very few cells show the organogenic/embryogenic response. In direct regeneration, the three regenerative pathways start from cells in different tissues. This is most obvious when the different types of regeneration occur in the same explant. The hormonal trigger for the dedifferentiation phase is a general one, probably auxin. During the induction phase, each pathway requires specific hormonal triggers. During the realization phase, hormones should be absent or at low concentration. The successive steps in the regeneration process coincide with events on the molecular and biochemical levels, but so far no coherent picture has emerged. In particular during the early stages of regeneration, research on these levels is hampered by a technical problem, viz., the very low proportion of cells that participate in the process of regeneration. New methods may overcome this problem. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Sergey Shabala 《Annals of botany》2013,112(7):1209-1221

Background

Global annual losses in agricultural production from salt-affected land are in excess of US$12 billion and rising. At the same time, a significant amount of arable land is becoming lost to urban sprawl, forcing agricultural production into marginal areas. Consequently, there is a need for a major breakthrough in crop breeding for salinity tolerance. Given the limited range of genetic diversity in this trait within traditional crops, stress tolerance genes and mechanisms must be identified in extremophiles and then introduced into traditional crops.

Scope and Conclusions

This review argues that learning from halophytes may be a promising way of achieving this goal. The paper is focused around two central questions: what are the key physiological mechanisms conferring salinity tolerance in halophytes that can be introduced into non-halophyte crop species to improve their performance under saline conditions and what specific genes need to be targeted to achieve this goal? The specific traits that are discussed and advocated include: manipulation of trichome shape, size and density to enable their use for external Na+ sequestration; increasing the efficiency of internal Na+ sequestration in vacuoles by the orchestrated regulation of tonoplast NHX exchangers and slow and fast vacuolar channels, combined with greater cytosolic K+ retention; controlling stomata aperture and optimizing water use efficiency by reducing stomatal density; and efficient control of xylem ion loading, enabling rapid shoot osmotic adjustment while preventing prolonged Na+ transport to the shoot.  相似文献   

10.
Zinc is the most widespread deficient micronutrient in the tea growing soils of India which affects growth of the plants. In order to investigate the structural, physiological, and biochemical changes under Zn stress (i.e. both deficient and excess supply) of tea [Camellia sinensis (L.) O. Kuntze cv. T-78] plants, we treated young plants with ZnSO4 at 0 (deficiency), 0.3, 3 (optimum), and 30 μM (toxic) concentrations for 8 weeks. Zn deficiency and excess resulted in considerable decrease in shoot and root fresh and dry masses, and transmission electron microscopy (TEM) revealed disorganization of some cellular organelles. Further, Zn-stress decreased net photosynthetic rate (PN), transpiration rate (E), stomatal conductance (gs), and content of chlorophylls a and b. On the other hand, content of superoxide anion, malondialdehyde, hydrogen peroxide, and phenols, and electrolyte leakage were elevated in stressed plants. The activities of ascorbate peroxidase, catalase, superoxide dismutase, and peroxidase as well as expression of respective genes were up-regulated under Zn-stress. Nevertheless, antioxidant system as a whole did not afford sufficient protection against oxidative damage.  相似文献   

11.
12.
The salt tolerance of the commercial F1 tomato hybrid (Lycopersicon esculentum Mill) Radja (GC-793) has been agronomically and physiologically evaluated under greenhouse conditions, using a control (nutrient solution), a moderate (70 mM NaCl added to the nutrient solution) and a high salt level (140 mM NaCl), applied for 130 days. The results show that Radja is a Na+-excluder genotype, tolerant to moderate salinity. Fruit yield was reduced by 16% and 60% and the shoot biomass by 30% and more than 75% under moderate and high salinities, respectively. At 90 days of salt treatment (DST), the mature leaves feeding the 4th truss at fruiting accumulated little Na+ (178 mmol kg-1 DW). At this time, the sucrose concentration in these leaves even increased with moderate salinity and the amino acid proline was not accumulated under salt conditions as compared to control. At 130 DST, Na+ was accumulated mainly by the roots in proportion to the salt level applied, while in leaves appreciable amounts were found only at high salinity (452 mmol kg-1 DW). In the leaves, Cl- was always accumulated in proportion to the salt level and in a very much greater amounts than Na+ (until 1640 mmol kg-1 DW). The sucrose content was reduced in all plants by salinity, and was distributed preferentially toward the distal stem and peduncle of a truss at fruiting under moderate salinity, and toward the basal stem and root at high salinity. Moreover, proline was accumulated in different organs of the plant only at high salinity, coinciding with Na+ accumulation in leaves. Attempts are made to find a clear relationship between physiological behaviour triggered by stress and the agronomical behaviour, in order to assess the validity of physiological traits used for salt-tolerance selection and breeding in tomato.  相似文献   

13.
几种盐生植物抗盐生理指标的研究   总被引:135,自引:3,他引:135  
研究对几种盐生植物进行了相关抗盐生理指标测定,抗盐生理指标测定结果表明:盐生植物组的功能叶中MDA含量平均值高于非盐生植物对照组,而膜透性平均值低于对照组;盐生植物组C1^-离子含量平均值高于对照组,可溶性糖含量平均值低于对照组,脯氨酸含量在所测3种渗透调节剂中所占比例最高,而且盐生植物组平均值高于对照组;无机渗透剂与有机渗透剂之间似有互补关系;C1^-离子含量与肉质性存在一定正相关;盐生植物组和  相似文献   

14.
Salt tolerance of halophytes corresponds with the habitat requirement of the species. It is an important factor during the germination phase and it can determine successful establishment. This paper presents the effects of alternating temperature–light regimes (4/8°C, 10/20°C, 20/32°C; 12 h dark: 12 h light) and different salinity levels (0, 200, 400, 600 mmol l21 NaCl) on seed germination of five halophytes, Halimione pedunculata, Bupleurum tenuissimum, Aster tripolium, Triglochin maritimum and Armeria maritima. The five species differ with respect to family and life‐form and spatially correspond to a decreasing salt gradient (i.e. distance from salt water, with H. pedunculata being the most tolerant and A. maritima being the least). Armeria maritima, A. tripolium and T. maritimum seeds were additionally subjected to a cold stratification experiment. The results showed that Halimione pedunculata, an annual therophyte of year‐round heavily saline habitats, was dormant under all experimental conditions. Bupleurum tenuissimum, a species typical to sites of varying salinity prone to leaching during spring and autumn rainfall, germinated best under cold and warm temperatures, but only under non‐saline conditions. Aster tripolium and T. maritimum, close neighbours in salt marshes, showed very similar germination behaviour: seeds of both species tolerated high levels of salinity and germinated best in summer temperatures during periods of highest soil salinity, and germination was significantly promoted by cold. Armeria maritima, a species usually found on the marginal fringes of saline habitats, germinated only under low salt levels and maximum germination was under cold (spring) and warm (autumn) temperatures, with no significant effect of cold stratification.  相似文献   

15.
The poorly understood physiological and biochemical drought responses induced in sweet orange by citrus rootstocks of contrasting drought tolerance were investigated during a drought/rewatering cycle under controlled conditions. Long-term exposure of the grafted trees to a gradually increasing water deficit and subsequent recovery revealed distinct strategies of drought acclimation that were induced by the different rootstocks. Trees grafted onto the drought-tolerant rootstock ‘Cravo’ rangpur lime were less water conservative, exhibiting an increased cell-wall elasticity that contributes to turgor maintenance and its related processes of growth and photosynthesis over a wider range of soil–water potentials. On the other hand, the drought-tolerant ‘Sunki Tropical’ mandarin and drought-sensitive ‘Flying Dragon’ trifoliate orange rootstocks induced a water conservation strategy by increasing tissue rigidity under drought. ‘Sunki Tropical’ was also able to induce osmotic adjustment, conferring thereby a more efficient water conservation strategy than ‘Flying Dragon’ by allowing for turgor maintenance at lower soil–water potentials while attenuating cell dehydration and shrinkage. In contrast to ‘Cravo’ and ‘Sunki Tropical’, trees grafted onto ‘Flying Dragon’ exhibited a significant photoinhibition of the photosystem II reaction centers, as well as an increased H2O2 production and lipid peroxidation under drought treatment. A significantly higher activity of the antioxidant enzyme GPX was also observed in drought stressed trees grafted onto ‘Flying Dragon’. Collectively, these results support the involvement of elastic and osmotic adjustments, as well as the control of oxidative stress, as functional leaf traits associated with the rootstock-induced drought tolerance in sweet orange.  相似文献   

16.
The specific features of the structural and functional organisation of the photosynthetic apparatus (PSA) were studied in wild halophytes representing three strategies of salt tolerance: euhalophyte Salicornia perennans, crynohalophyte Limonium gmelinii, and glycohalophyte Artemisia santonica. The sodium content in aboveground parts of the plants corresponded to the strategy of salt tolerance. The photosynthetic cells of the euhalophyte were large and contained a higher number of chloroplasts than those in other species. In contrast, the number of cells per a leaf area unit was lower in S. perennans as compared to cryno- and glycohalophytes. Thereupon, the cell and chloroplast surface area per leaf area unit declined in the following sequence: A. santonica > L. gmelinii > S. perennans. However, the large cells of euhalophyte contained chloroplasts of larger sizes with 4- to 5-fold higher chlorophyll (Chl) content per chloroplast and Chl concentration in chloroplast volume unit. Also, chloroplasts of S. perennans were characterised by the higher content of glyco- and phospholipids. Qualitative composition of fatty acids (FA) in lipids isolated from the chloroplast-enriched fraction was similar in all three species; however, the index of unsaturation of FA was higher in glycohalophyte A. santonica than those in two other species. Under natural condition, PSA of all three halophytes showed high resistance to soil salinity. The results indicated tolerance of PSII to the photodamage in halophytes. The high rate of electron transport through PSII can be important to prevent oxidative damage of PSA in halophytes under strong light and hight temperature in vivo. Thus, the strategy of salt tolerance is provided by both the leaf anatomical structure and the ultrastructure of photosynthetic membranes, which is determined in particular by the specific composition of lipids.  相似文献   

17.
During ripening, fleshy fruits undergo textural changes that lead to loss of tissue firmness and consequent softening due to cell wall dismantling carried out by different and specifically expressed enzymes. The effect of various chemical treatments on the ripening of mango fruit (Mangifera indica) was investigated at physiological and biochemical level. Based on changes in respiration, firmness, pH, total soluble sugar and a cell wall degrading enzyme pectate lyase (PEL) activity, treatment with 1-methylcyclopropene (1-MCP), silver nitrate (AgNO3), gibberlic acid (GA3), sodium metabisulphite (SMS) and ascorbic acid led to delaying of ripening process while those of ethrel and calcium chloride (CaCl2) enhanced the process. PEL of mango was found to be inhibited by certain metabolites present in dialysed ammonium sulphate enzyme extract as well as EDTA. Mango PEL activity exhibited an absolute requirement for Ca2+ and an optimum pH of 8.5.  相似文献   

18.
The combined drought and salinity stresses pose a serious challenge for crop production, but the physiological mechanisms behind the stresses responses in wheat remains poorly understood. Greenhouse pot experiment was performed to study differences in genotype response to the single and combined (D + S) stresses of drought (4% soil moisture, D) and salinity (100 mM NaCl, S) using two wheat genotypes: Jimai22 (salt tolerant) and Yangmai20 (salt‐sensitive). Results showed that salinity, drought and/or D + S severely reduces plant growth, biomass and net photosynthetic rate, with a greater effect observed in Yangmai20 than Jimai22. A notable improvement in water use efficiency (WUE) by 239, 77 and 103% under drought, salinity and D + S, respectively, was observed in Jimai22. Moreover, Jimai22 recorded higher root K+ concentration in drought and salinity stressed condition and shoot K+ under salinity alone than that of Yangmai20. Jimai22 showed lower increase in malondialdehyde (MDA) accumulation, but higher activities of superoxide dismutase (SOD, EC 1.15.1.1) and guaicol peroxidase (POD, EC 1.11.1.7), under single and combined stresses, and catalase (CAT, EC 1.11.1.6) and ascorbate peroxidase (APX, EC 1.11.1.11) under single stress. Our results suggest that high tolerance of Jimai22 in both drought and D + S stresses is closely associated with larger root length, higher Fv/Fm and less MDA contents and improved capacity of SOD and POD. Moreover, under drought Jimai22 tolerance is firmly related to higher root K+ concentration level and low level of Na+, high‐net photosynthetic rate and WUE as well as increased CAT and APX activities to scavenge reactive oxygen species.  相似文献   

19.
20.
Improvement in salinity tolerance of plants is of immense significance as salt stress particularly threatens the productivity of agricultural crops. This study was designed to assess the tolerance level of six Brassica napus varieties (Super, Sandal, Faisal, CON-111, AC Excel and Punjab) under different levels of salinity (0, 50, 100, 150 & 200 mM) with three replications under CRD. Salt induced osmotic stress curtailed the plant growth attributes, photosynthetic pigments and disturbed ionic homeostasis (K+, Na+, Ca2+, Cl-) but least disturbance as compared to control was found in Super and Sandal cultivars. Punjab canola and AC Excel canola cultivars were least tolerant to salinity because these displayed greater decline in all growth and biochemical attributes. Plants subjected to NaCl induced stress exhibited considerable decline in all attributes under study with proline as exception. Antioxidants (CAT, SOD & POD) showed an obvious change in Canola plants under stress, but greatest decline was displayed at 200 mM NaCl level in all six cultivars. Over all these attributes presented a comparatively stable trend in super and sandal cultivars. This shows presence of physiological resilience and metabolic capacity in these two cultivars to tackle salinity. Similarly, all yield attributes displayed adverse behavior under 150 mM & 200 mM salinity stress. Our results demonstrated that Super and Sandal cultivars of Brassica napus exhibit good performance in salinity tolerance and can be good option for cultivation in salt affected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号