首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The effect of strong hypomorphic mutation of the insulin-like protein gene (dilp6) on metabolism of octopamine (one of the main biogenic amines in insects) was studied in Drosophila melanogaster males and females. The activity of tyrosine decarboxylase (the key enzyme of octopamine synthesis) and the activity of octopamine-dependent N-acetyltransferase (the enzyme of its degradation) were measured. It was demonstrated that the activity of both studied enzymes is decreased under normal conditions in the dilp641 mutants (as we previously demonstrated, this is correlated with an increased level of octopamine). It was also found that hypomorphic mutation of the dilp6 gene decreases the intensity of tyrosine decarboxylase response to heat stress. Thus, it was demonstrated for the first time that insulin-like DILP6 protein in drosophila influences the level of octopamine (regulating the activity of the enzyme degrading octopamine).  相似文献   

2.
The heat stress resistance of Drosophila melanogaster females carrying a hypomorphic mutation of the DILP6 insulin-like protein gene (dilp6 41 ) under a change in the level of stress-related hormones (juvenile hormone and octopamine) is studied. It is revealed that the dilp6 41 mutation decreases the heat stress resistance of mature D. melanogaster females. An experimental decrease in the level of juvenile hormone is shown to restore the stress resistance of mutant females to the level of stress resistance observed in wild type Canton S females. These data suggest that the effects of the dilp6 41 mutation on the stress resistance of females are mediated by an increased level of juvenile hormone. An experimental increase in the octopamine level that causes an increase in juvenile hormone level supports this hypothesis: the resistance to heat stress decreases in females of both lines and this decrease is more significant in mutant females than in the control line. Thus, it is established for the first time that the effect of the hypomorphic dilp6 gene mutation on the heat stress resistance of D. melanogaster females is mediated by juvenile hormone.  相似文献   

3.
In a number of works, it was demonstrated that insulin/insulin-like growth factor signaling pathway in the Drosophila melanogaster can be involved in the control of the organism reaction to stress. However, it remains unclear which of eight insulin-like peptides (ligands of insulin/insulin-like growth factor signaling pathway) known in the D. melanogaster are involved in the response to different types of stress. We conducted immunohistochemical analysis of the expression of two insulin-like peptide genes (DILP2 and DILP3) in insulin-producing cells of the brain in adult D. melanogaster females after heat stress. We for the first time found that the DILP3 is one of the components of the response to heat stress, while the DILP2 is apparently not involved in the organism response to heat stress.  相似文献   

4.
5.

Background

Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio).

Results

We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh 3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish.

Conclusions

The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
  相似文献   

6.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

7.
A complex study on the adaptation of cn and vn mutants and the allozymes of alcoholdehydrogenase (ADH) was carried out in initially pure lines, and their panmixia populations during exchange of the mutant genotype with that of wild-type flies (C-S) and D) through saturating crossings. The relative adaptation of the genotypes was estimated by their effect on reproductive efficiency in the experimentally obtained population. Fecundity, lifespan, and the resistance of the studied genotypes to hyperthermia were investigated individually. It was shown that the high level of adaptation of the cn mutants and the low level of adaptation of the vg mutants was correlated with the presence of different ADH allozymes. In the studied population, the F-allozyme of ADH accompanied the vg mutation, while the S-allozyme of the enzyme was detected in cn mutants. Saturating crossings of C-S(Adh Svg(Adh F) and D(Adh F) × cn(Adh S), along with the parallel determination of the allele composition of the Adh locus, demonstrated that the complete substitution of the F-allozyme of ADH in the vg mutants by the S-allozyme in D flies, as well as the substitution of the S-allozyme of ADH in the cn mutants by the F-allozyme in D flies was realized only after the 15th–20th backcrosses. These results favor the coadaptation of cn and vg marker genes with alleles of the Adh locus and indicate the important role of the latter in the adaptation of genotypes. In the studied population, selection acted primarily against the vg mutants, which were inferior to the cn mutants, and heterozygote genotypes in indices of the main adaptation components.  相似文献   

8.
Pathogenicity of Candida albicans is associated with its capacity switch from yeast-like to hyphal growth. The hyphal form is capable to penetrate the epithelial surfaces and to damage the host tissues. Therefore, many investigations have focused on mechanisms that control the morphological transitions of C. albicans. Recently, certain studies have showed that non-albicans Candida species can reduce the capacity of C. albicans to form biofilms and to develop candidiasis in animal models. Then, the objective of this study was to evaluate the effects of Candida krusei and Candida glabrata on the morphogenesis of C. albicans. Firstly, the capacity of reference and clinical strains of C. albicans in forming hyphae was tested in vitro. After that, the expression of HWP1 (hyphal wall protein 1) gene was determined by quantitative real-time PCR (polymerase chain reaction) assay. For both reference and clinical strains, a significant inhibition of the hyphae formation was observed when C. albicans was incubated in the presence of C. krusei or C. glabrata compared to the control group composed only by C. albicans. In addition, the culture mixed of C. albicans-C. krusei or C. albicans-C. glabrata reduced significantly the expression of HWP1 gene of C. albicans in relation to single cultures of this specie. In both filamentation and gene expression assays, C. krusei showed the higher inhibitory activity on the morphogenesis of C. albicans compared to C. glabrata. C. krusei and C. glabrata are capable to reduce the filamentation of C. albicans and consequently decrease the expression of the HWP1 gene.  相似文献   

9.
10.
11.
12.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

13.
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20?37°C (optimum, 25?30°C), at pH 6.0?10.0 (optimum, 7.0?8.0), and with 0.5?15.0% (w/v) NaCl (optimum, 2.0?5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).  相似文献   

14.
15.
The gene expression profile chip of salt-resistant wheat mutant RH8706-49 under salt stress was investigated. The overall length of the cDNA sequence of the probe was obtained using electronic cloning and RT-PCR. An unknown gene induced by salt was obtained, cloned, and named TaDi19 (Triticum aestivum drought-induced protein). No related report or research on the protein is available. qPCR analysis showed that gene expression was induced by many stresses, such as salt. Arabidopsis thaliana was genetically transferred using the overexpressing gene, which increased its salt tolerance. After salt stress, the transgenic plant demonstrated better physiological indicators (higher Ca2+ and lower Na+) than those of the wild-type plant. Results of non-invasive micro-test technology indicate that TaDi19-overexpressing A. thaliana significantly effluxed Na+ after salt treatment, whereas the wild-type plant influxed Na+. Chelating extracellular Ca2+ resulted in insignificant differences in salt tolerance between overexpressing and wild-type A. thaliana. Subcellular localization showed that the gene encoding protein was mainly located in the cell membrane and nucleus. TaDi19 was overexpressed in wild-type A. thaliana, and the transgenic lines were more salt-tolerant than the control A. thaliana. Thus, the wheat gene TaDi19 could increase the salt tolerance of A. thaliana.  相似文献   

16.
17.
Small heat shock proteins (sHSPs) have been shown to be involved in stress tolerance. However, their functions in Prunus mume under heat treatment are poorly characterized. To improve our understanding of sHSPs, we cloned a sHSP gene, PmHSP17.9, from P. mume. Sequence alignment and phylogenetic analysis indicated that PmHSP17.9 was a member of plant cytosolic class III sHSPs. Besides heat stress, PmHSP17.9 was also upregulated by salt, dehydration, oxidative stresses and ABA treatment. Leaves of transgenic Arabidopsis thaliana that ectopically express PmHSP17.9 accumulated less O2 ? and H2O2 compared with wild type (WT) after 42 °C treatment for 6 h. Over-expression of PmHSP17.9 in transgenic Arabidopsis enhanced seedling thermotolerance by decreased relative electrolyte leakage and MDA content under heat stress treatment when compared to WT plants. In addition, the induced expression of HSP101, HSFA2, and delta 1-pyrroline-5-carboxylate synthase (P5CS) under heat stress was more pronounced in transgenic plants than in WT plants. These results support the positive role of PmHSP17.9 in response to heat stress treatment.  相似文献   

18.
Molecular cloning of the DIP1 gene located in the 20A4-5 region has been performed from the following strains with the flamenco phenotype: flam SS (SS) and flam MS (MS) characterized by a high transposition rate of retrotransposon gypsy (mdg4), flam py + (P) carrying the insertion of a construction based on the P element into the region of the flamenco gene, and flamenco +. The results of restriction analysis and sequencing cloned DNA fragments has shown that strains flam SS , flam MS considerably differ from flam py + (P), and flamenco + in the structure of DIP1. Strains flam SS and flam MS have no DraI restriction site at position 1765 in the coding region of the gene, specifically, in the domain determining the signal of the nuclear localization of the DIP1 protein. This mutation has been found to consist in a nucleotide substitution in the recognition site of DraI restriction endonuclease, which is transformed from TTTAAA into TTTAAG and, hence, is not recognized by the enzyme. This substitution changes codon AAA into AAG and is translationally insignificant, because both triplets encode the same amino acid, lysine. The DIP1 gene of strains flam SS and flam MS has been found to contain a 182-bp insertion denoted IdSS (insertion in DIP1 strain SS); it is located in the second intron of the gene. The IdSS sequence is part of the open reading frame encoding the putative transposase of the mobile genetic element HB1 belonging to the Tc1/mariner family. This insertion is presumed to disturb the conformations of DNA and the chromosome, in particular, by forming loops, which alters the expression of DIP1 and, probably, neighboring genes. In strains flamenco + and flam py + (P), the IdSS insertion within the HB1 sequence is deleted. The deletion encompasses five C-terminal amino acid residues of the conserved domain and the entire C-terminal region of the putative HB1 transposase. The obtained data suggest that DIP1 is involved in the control of gypsy transpositions either directly or through interaction with other elements of the genome.  相似文献   

19.
20.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号