首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
V N Stegni? 《Genetika》1987,23(7):1194-1199
Essential differences in the architecture of the chromosomes between the 7 species of Anopheles maculipennis complex are found. The system of chromosomes' attachment to the nuclear envelope is invariant within particular species, each of the species studied, together with homosequential A. maculipennis and A. subalpinus differing one from another. The spatial organization of nutrse ovarian cell chromosomes in experimental hybrids (A. maculipennis X A. subalpinus and A. sacharovi X A. matrinius) shows species-specificity pattern of parental species. Thus, the spatial organization of interphase nucleus is the invariant species sign, and from the author's point of view, this phenomenon is due to penetration of new type mutations--systemic mutations (according to Richard Goldschmidt), directly connected with speciation.  相似文献   

2.
A Taddei  SM Gasser 《Genetics》2012,192(1):107-129
Budding yeast, like other eukaryotes, carries its genetic information on chromosomes that are sequestered from other cellular constituents by a double membrane, which forms the nucleus. An elaborate molecular machinery forms large pores that span the double membrane and regulate the traffic of macromolecules into and out of the nucleus. In multicellular eukaryotes, an intermediate filament meshwork formed of lamin proteins bridges from pore to pore and helps the nucleus reform after mitosis. Yeast, however, lacks lamins, and the nuclear envelope is not disrupted during yeast mitosis. The mitotic spindle nucleates from the nucleoplasmic face of the spindle pole body, which is embedded in the nuclear envelope. Surprisingly, the kinetochores remain attached to short microtubules throughout interphase, influencing the position of centromeres in the interphase nucleus, and telomeres are found clustered in foci at the nuclear periphery. In addition to this chromosomal organization, the yeast nucleus is functionally compartmentalized to allow efficient gene expression, repression, RNA processing, genomic replication, and repair. The formation of functional subcompartments is achieved in the nucleus without intranuclear membranes and depends instead on sequence elements, protein-protein interactions, specific anchorage sites at the nuclear envelope or at pores, and long-range contacts between specific chromosomal loci, such as telomeres. Here we review the spatial organization of the budding yeast nucleus, the proteins involved in forming nuclear subcompartments, and evidence suggesting that the spatial organization of the nucleus is important for nuclear function.  相似文献   

3.
The spatial organization of chromosomes inside the cell nucleus is still poorly understood. This organization is guided by intra- and interchromosomal contacts and by interactions of specific chromosomal loci with relatively fixed nuclear 'landmarks' such as the nuclear envelope and the nucleolus. Researchers have begun to use new molecular genome-wide mapping techniques to uncover both types of molecular interactions, providing insights into the fundamental principles of interphase chromosome folding.  相似文献   

4.
We studied the spatial organization of chromatin in the interphase G1, S and G2 nucleus of the protozoan Trypanosoma brucei, applying in situ hybridization with conventional fluorescence and confocal scanning optical microscopy. The majority of the trypanosome telomere GGGTTA repeats from different chromosomes were found clustered together, either extending in a network through the nuclear interior or localized at the nuclear periphery. The population of one hundred mini-chromosomes was often asymmetrically located: either clustered in a narrow band in close association with the nuclear envelope or distributed into several clusters that segregated into roughly one half of the nucleus. The nuclear organization may undergo modifications during the cell cycle and development. We conclude that non-random spatial positioning of DNA exists in the nucleus of this protozoan. Finding a high level of structural organization in the interphase nucleus of T.brucei is an important first step towards understanding chromosome structure and functioning and its role in the control of gene expression.  相似文献   

5.
Anopheles funestus Giles is one of the major malaria vectors in Africa, but little is known about its genetics. Lack of a cytogenetic map characterized by regions has hindered the progress of genetic research with this important species. This study developed a cytogenetic map of An. funestus using ovarian nurse cell polytene chromosomes. We demonstrate an important application with the cytogenetic map for characterizing various chromosomal inversions for specimens collected from coastal Kenya. The linear and spatial organization of An. funestus polytene chromosomes was compared with the best-studied malaria mosquito, An. gambiae Giles. Comparisons of chromosome morphology between the two species have revealed that the most extensive chromosomal rearrangement occurs in pericentromeric heterochromatin of autosomes. Differences in pericentromeric heterochromatin types correlate with nuclear organization differences between An. funestus and An. gambiae. Attachments of chromosomes to the nuclear envelope strongly depend on the presence of diffusive beta-heterochromatin. Thus, An. funestus and An. gambiae exhibit species-specific characteristics in chromosome-linear and -spatial organizations.  相似文献   

6.
The nucleolus in Saccharomyces cerevisiae is a crescent-shaped structure that makes extensive contact with the nuclear envelope. In different chromosomal rDNA deletion mutants that we have analyzed, the nucleolus is not organized into a crescent structure, as determined by immunofluorescence microscopy, fluorescence in situ hybridization, and electron microscopy. A strain carrying a plasmid with a single rDNA repeat transcribed by RNA polymerase I (Pol I) contained a fragmented nucleolus distributed throughout the nucleus, primarily localized at the nuclear periphery. A strain carrying a plasmid with the 35S rRNA coding region fused to the GAL7 promoter and transcribed by Pol II contained a rounded nucleolus that often lacked extensive contact with the nuclear envelope. Ultrastructurally distinct domains were observed within the round nucleolus. A similar rounded nucleolar morphology was also observed in strains carrying the Pol I plasmid in combination with mutations that affect Pol I function. In a Pol I–defective mutant strain that carried copies of the GAL7-35S rDNA fusion gene integrated into the chromosomal rDNA locus, the nucleolus exhibited a round morphology, but was more closely associated with the nuclear envelope in the form of a bulge. Thus, both the organization of the rDNA genes and the type of polymerase involved in rDNA expression strongly influence the organization and localization of the nucleolus.  相似文献   

7.
The organization of the genome is nonrandom and important for correct function. Specifically, the nuclear envelope plays a critical role in gene regulation. It generally constitutes a repressive environment, but several genes, including the GAL locus in budding yeast, are recruited to the nuclear periphery on activation. Here, we combine imaging and computational modeling to ask how the association of a single gene locus with the nuclear envelope influences the surrounding chromosome architecture. Systematic analysis of an entire yeast chromosome establishes that peripheral recruitment of the GAL locus is part of a large-scale rearrangement that shifts many chromosomal regions closer to the nuclear envelope. This process is likely caused by the presence of several independent anchoring points. To identify novel factors required for peripheral anchoring, we performed a genome-wide screen and demonstrated that the histone acetyltransferase SAGA and the activity of histone deacetylases are needed for this extensive gene recruitment to the nuclear periphery.  相似文献   

8.
《Biophysical journal》2022,121(21):4189-4204
DNA architectural proteins play a major role in organization of chromosomal DNA in living cells by packaging it into chromatin, whose spatial conformation is determined by an intricate interplay between the DNA-binding properties of architectural proteins and physical constraints applied to the DNA by a tight nuclear space. Yet, the exact effects of the nucleus size on DNA-protein interactions and chromatin structure currently remain obscure. Furthermore, there is even no clear understanding of molecular mechanisms responsible for the nucleus size regulation in living cells. To find answers to these questions, we developed a general theoretical framework based on a combination of polymer field theory and transfer-matrix calculations, which showed that the nucleus size is mainly determined by the difference between the surface tensions of the nuclear envelope and the endoplasmic reticulum membrane as well as the osmotic pressure exerted by cytosolic macromolecules on the nucleus. In addition, the model demonstrated that the cell nucleus functions as a piezoelectric element, changing its electrostatic potential in a size-dependent manner. This effect has been found to have a profound impact on stability of nucleosomes, revealing a previously unknown link between the nucleus size and chromatin structure. Overall, our study provides new insights into the molecular mechanisms responsible for regulation of the nucleus size, as well as the potential role of nuclear organization in shaping the cell response to environmental cues.  相似文献   

9.
Arrangement of chromosomes in the interphase nucleus of plants   总被引:16,自引:1,他引:15  
Chromosomal arrangement in the interphase nucleus has two main aspects: (1) arrangement of chromosomes with respect to nuclear polarity and to other nuclear components, and (2) arrangement of chromosomes with respect to one another. The latter aspect consists of two main types of spatial relationships; (a) relationships between different members of one chromosomal set, (b) relationships between different chromosomal sets. Data concerning various aspects of chromosomal arrangement in the interphase nucleus are presented and discussed and the genetic control as well as subcellular mechanisms which are involvled in nuclear organization, are elucidated. Evidence is presented indicating that, in common wheat, the gene system that determines the specific pattern of chromosomal arrangement in the nucleus is operating via the microtubular elements of the spindle system. The significance of ordered arrangement of chromosomes in the nucleus for the regularity of genetic activity and chromosomal behavior, is pointed out.Supported in part by a grant from the Stiftung Volkswagenwerk AZ I/34 075/76  相似文献   

10.
Differential scanning calorimetry and quantitative fluorescence microscopy have been employed to characterize the structure and organization of in situ chromatin in lymphoblastoid cells obtained from one ataxia telangiectasia (A-T) patient and one healthy family member. The proven capability of these biophysical techniques to measure changes of chromatin condensation directly inside the cells makes them very powerful in studying the eventual structural changes associated with the appearance of a pleiotropic genetic disorder such as ataxia telangiectasia. A-T syndrome is genetically heterogeneous and can be induced by different mutations of a single gene. The aim of this work is to determine whether the genetic mutation exhibited by the A-T patient of this study may be associated with modifications of chromatin structure and organization. Both the calorimetric and the fluorescence microscopy results acquired on cells from the A-T patient show that the structure and distribution of nuclear chromatin in situ change considerably with respect to the control. A significant decondensation of the nuclear chromatin is in fact associated with the appearance of the A-T disorder in the A-T patient under analysis, together with a rearrangement of the chromatin domains inside the nucleus.  相似文献   

11.
Chromosomes are intricately folded and packaged in the cell nucleus and interact with the nuclear envelope. This complex nuclear architecture has a profound effect on how the genome works and how the cells function. The main goal of review is to highlight recent studies on the effect of chromosome–nuclear envelope interactions on chromatin folding and function in the nucleus. The data obtained suggest that chromosome–nuclear envelope attachments are important for the organization of nuclear architecture in various organisms. A combination of experimental cell biology methods with computational modeling offers a unique opportunity to explore the fundamental relationships between different aspects of 3D genome organization in greater details. This powerful interdisciplinary approach could reveal how the organization and function of the genome in the nuclear space is affected by the chromosome–nuclear envelope attachments and will enable the development of novel approaches to regulate gene expression.  相似文献   

12.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations at regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

13.
The involvement of the nuclear envelope in the modulation of chromatin organization is strongly suggested by the increasing number of human diseases due to mutations of nuclear envelope proteins. A common feature of these diseases, named laminopathies, is the occurrence of major chromatin defects. We previously reported that cells from laminopathic patients show an altered nuclear profile, and loss or detachment of heterochromatin from the nuclear envelope. Recent evidence indicates that processing of the lamin A precursor is altered in laminopathies featuring pre-mature aging and/or lipodystrophy phenotype. In these cases, pre-lamin A is accumulated in the nucleus and heterochromatin is severely disorganized. Here we report evidence indicating that pre-lamin A is mis-localized in the nuclei of Emery-Dreifuss muscular dystrophy fibroblasts, either bearing lamin A/C or emerin mutations. Abnormal pre-lamin A-containing structures are formed following treatment with a farnesyl-transferase inhibitor, a drug that causes accumulation of pre-lamin A. Pre-lamin A-labeled structures co-localize with heterochromatin clumps. These data indicate that in almost all laminopathies the expression of the mutant lamin A precursor disrupts the organization of heterochromatin domains. Our results further show that the absence of emerin expression alters the distribution of pre-lamin A and of heterochromatin areas, suggesting a major involvement of emerin in pre-lamin A-mediated mechanisms of chromatin remodeling.  相似文献   

14.
Effect of chromosomal rearrangements on the expression of mutations was studied in Drosophila melanogaster regulatory genes. These were facultative dominant lethals and recessive lethals on the X chromosome obtained by the classical Muller-5 method. Chromosomal rearrangements drastically changed the expression of regulatory gene mutations. Rearrangements either caused the lethal effect of mutations or suppressed the already present lethality. The action of rearrangements exhibited the maternal or paternal effect. Irrespective of the presence in the genome of mutations of regulatory genes, a rearrangement acted as a factor decreasing fertility of the organism. The rearrangement effect is identical to the expression of regulatory genes per se. It is concluded that the chromosomal rearrangement affects the examined regulatory genes indirectly through a change in the operation of regulatory genes located within the rearrangement. Thus, rearrangements gain great importance for the definition of the pattern of genome functional activity. Widespread distribution of rearrangements in individual genotypes and their effectivity in the process of speciation are thus explained.  相似文献   

15.
A nucleolar auto-antigen is part of a major chromosomal surface component   总被引:5,自引:0,他引:5  
Several nucleolar antigens are defined by human autoantibodies. These antigens can therefore be used to follow the fate of nucleolar components through mitosis when this major nuclear structure disintegrates and becomes reassembled in G1-phase. We found that fibrillarin leaves the nucleolus before complete breakdown of this structure and attaches to chromosomes before nuclear envelope breakdown. In mouse, fibrillarin attaches over the chromosomal surface except for the excluded centromeric region. The antigen is transported to the new nucleus via the chromosomes and is last seen on chromosomal surfaces facing the cytoplasm during nuclear envelope reformation. Lamin B reappears on the same chromosomal surfaces before the nucleolar antigen is removed and aggregates for new nucleolar reformation in G1-phase cells. From our observations, we postulate that the antigen acts in concert with other proteins as a nuclear envelope equivalent by forming a protective sheath around the chromosome, that it excludes larger molecules, and helps to separate the chromosomes, in addition to segregation of the ribonucleoprotein (RNP) back to the nucleus for nucleolar reconstruction. We also suggest that the selective retention of these antigens from certain areas on individual chromosomes together with specific lamin B attachment over these chromosomal surfaces allows for a nonrandom positioning of chromosomes in the nucleus.  相似文献   

16.
SYNOPSIS. The ultrastructure of interphase and mitotic nuclei of the epimastigote form of Trypanosoma cyclops Weinman is described. In the interphase nucleus the nucleolus is located centrally while at the periphery of the nucleus condensed chromatin is in contact with the nuclear envelope. The nucleolus fragments at the onset of mitosis, but granular material of presumptive nucleolar origin is often recognizable in the mitotic nucleus. Peripheral chromatin is in contact with the nuclear envelope throughout mitosis, and it seems reasonable to assume that the nuclear envelope is involved in its segregation to the daughter nuclei. Spindle microtubules extend between the poles of the dividing nucleus and terminate close to the nuclear envelope. The basal body and kinetoplast divide before the onset of mitosis and do not appear to have any morphologic involvement in that process. Spindle pole bodies, kinetochores, and chromosomal microtubules have not been observed.  相似文献   

17.
Schirmer EC 《Mutation research》2008,647(1-2):112-121
Mammalian chromosomes and some specific genes have non-random positions within the nucleus that are tissue-specific and heritable. Work in many organisms has shown that genes at the nuclear periphery tend to be inactive and altering their partitioning to the interior results in their activation. Proteins of the nuclear envelope can recruit chromatin with specific epigenetic marks and can also recruit silencing factors that add new epigenetic modifications to chromatin sequestered at the periphery. Together these findings indicate that the nuclear envelope is a significant epigenetic regulator. The importance of this function is emphasized by observations of aberrant distribution of peripheral heterochromatin in several human diseases linked to mutations in NE proteins. These debilitating inherited diseases range from muscular dystrophies to the premature aging progeroid syndromes and the heterochromatin changes are just one early clue for understanding the molecular details of how they work. The architecture of the nuclear envelope provides a unique environment for epigenetic regulation and as such a great deal of research will be required before we can ascertain the full range of its contributions to epigenetics.  相似文献   

18.
Most inherited diseases are associated with mutations in a specific gene. Sometimes, mutations in two or more different genes result in diseases with a similar phenotype. Rarely do different mutations in the same gene result in a multitude of seemingly different and unrelated diseases. In the past three years, different mutations in LMNA, the gene encoding the A-type lamins, have been shown to be associated with at least six different diseases. These diseases and at least two others caused by mutations in other proteins associated with the nuclear lamina are collectively called the laminopathies. How different tissue-specific diseases arise from unique mutations in the LMNA gene, encoding almost ubiquitously expressed nuclear proteins, are providing tantalizing insights into the structural organization of the nucleus, its relation to nuclear function in different tissues and the involvement of the nuclear envelope in the development of disease.  相似文献   

19.
《The Journal of cell biology》1990,111(6):2815-2828
The spatial and temporal dynamics of diploid chromosome organization, microtubule arrangement, and the state of the nuclear envelope have been analyzed in syncytial blastoderm embryos of Drosophila melanogaster during the transition from prophase to metaphase, by three- dimensional optical sectioning microscopy. Time-lapse, three- dimensional data recorded in living embryos revealed that congression of chromosomes (the process whereby chromosomes move to form the metaphase plate) at prometaphase occurs as a wave, starting at the top of the nucleus near the embryo surface and proceeding through the nucleus to the bottom. The time-lapse analysis was augmented by a high- resolution analysis of fixed embryos where it was possible to unambiguously trace the three-dimensional paths of individual chromosomes. In prophase, the centromeres were found to be clustered at the top of the nucleus while the telomeres were situated at the bottom of the nucleus or towards the embryo interior. This polarized centromere-telomere orientation, perpendicular to the embryo surface, was preserved during the process of prometaphase chromosome congression. Correspondingly, breakdown of the nuclear envelope started at the top of the nucleus with the mitotic spindle being formed at the positions of the partial breakdown of the nuclear envelope. Our observation provide an example in which nuclear structures are spatially organized and their functions are locally and coordinately controlled in three dimensions.  相似文献   

20.
Chromosome organization inside the nucleus is not random but rather is determined by a variety of factors, including interactions between chromosomes and nuclear components such as the nuclear envelope or nuclear matrix. Such interactions may be critical for proper nuclear organization, chromosome partitioning during cell division, and gene regulation. An important, but poorly documented subset, includes interactions between specific chromosomal regions. Interactions of this type are thought to be involved in long-range promoter regulation by distant enhancers or locus control regions and may underlie phenomena such as transvection. Here, we used an in vivo microscopy assay based on Lac Repressor/operator recognition to show that Mcp, a polycomb response element from the Drosophila bithorax complex, is able to mediate physical interaction between remote chromosomal regions. These interactions are tissue specific, can take place between multiple Mcp elements, and seem to be stable once established. We speculate that this ability to interact may be part of the mechanism through which Mcp mediates its regulatory function in the bithorax complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号