首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The possible hydrolytic activity towards chlorophyll molecules was predicted for DUF538 protein superfamily in plants. It was examined by using computational as well as experimental tools including in vitro chlorophyll degradation, antioxidant compounds production and in vivo real-time gene expression tests. Comparison of the computational data with the experimental results indicated that DUF538 proteins might be chlorophyll hydrolyzing enzyme (most probably carboxyesterase) which degrade chlorophyll molecules (66 % per 12 hrs) to produce new compounds (1.8 fold per 12 hrs) with antioxidant properties. The relevance of DUF538 gene expression level with the chlorophyll contents (2.8 fold increase per chlorophyll content of 50 %) of the drought-stressed leaves showed that chlorophyll degradation by DUF538 is most probably induced in response to stress stimuli. Despite membranous chlorophyll catabolic pathways, DUF538-dependent reactions is predicted to be occurred in the cytosol of the under stressed plants. We addressed as to whether chlorophyll breakdown to antioxidant compounds by DUF538 is a defense mechanism of plants against stress stimuli, in vivo? This question is going to be investigated in our next research project.  相似文献   

2.
Gene egl2 of secreted endo-(1–4)-β-glucanase of glycosyl hydrolase family 5 of the mycelial fungus Penicillium canescens was cloned. The gene was expressed in P. canescens under control of a strong promoter of the bgaS gene encoding β-galactosidase of P. canescens, and endoglucanase producing strains were obtained. Chromatographically purified recombinant 48 kDa protein had pH and temperature optima 3.4 and 60°C, respectively, exhibited specific activity of 33 IU, and had K m and V max in CM-cellulose hydrolysis of 10.28 g/liter and 0.26 μmol/sec per mg, respectively.  相似文献   

3.
A novel exo-arabinase (GH93, exo-ABN) enzyme produced by the ascomycete Penicillium canescens has been studied. Cloning of the abn1 gene coding for exo-ABN into the recipient P. canescens strain RN3-11-7 yielded recombinant producing strains characterized by a high yield of extracellular exo- ABN production (20–30% of the total amount of extracellular protein). Chromatographic purification yielded a homogenous exo-ABN with a molecular weight of 47 kDa, as shown by SDS-PAGE. The enzyme showed high specific activity towards linear arabinan (117 U/mg) and low specific activity towards branched arabinan and arabinoxylan (4–5 U/mg) and para-nitrophenyl-α-L-arabinofuranoside (0.3 U/mg), whereas arabinogalactan and para-nitrophenyl-α-L-arabinopyranoside, the substrates that contained the pyranose form of arabinose, were not hydrolyzed. Arabinohexaose was the major product of linear arabinan hydrolysis. Exo-ABN had a pH optimum at 5.0 and a temperature optimum at 60°C. The enzyme was stable in a broad pH range (4.0–7.0) and upon heating to 50°C during 180 min. Extensive hydrolysis of linear and branched arabinans by exo- and endo-arabinase mixtures, arabinofuranosidase, and arabinofuran-arabinoxylan hydrolase has been performed. The degree of substrate conversion amounted to 67 and 83% of the maximal possible value, respectively.  相似文献   

4.
LrgA and LrgB genes have been identified as new components in regulation of programmed cell death (PCD) in bacteria. While in Arabidopsis, it has been documented that AtLrgB plays a crucial role in chloroplast development and photorespiration by acting as a glycolate/glycerate translocator (PLGG1) in the chloroplast inner membrane. However, little is known about LrgB homologs in other plant species, especially those with fleshy fruits. In this study, a homologous gene of AtLrgB, here designated SlLrgB, was identified in tomato. Similar to AtLrgB, structure analysis suggests that the LrgA and LrgB genes have evolved into two domains of the SlLrgB protein. Expression pattern analysis showed that SlLrgB accumulated mainly in green tissues and could be regulated by light, hormone, and abiotic stress treatments. Compared to wild-type plants, parts of SlLrgB overexpression plants displayed etiolated leaves and a growth retardation phenotype, with significantly reduced chlorophyll content both in leaves and fruits. The qPCR results revealed that the SGR gene, which was associated with chlorophyll degradation, was severely repressed. Two key genes in the chlorophyll biosynthesis pathway, CAO and POR, were also suppressed in the SlLrgB overexpression plants. Taken together, we suggest that SlLrgB may play important roles in the regulation of chlorophyll metabolism pathways in tomato.  相似文献   

5.
6.
Expression of acid ectophosphatase by Enterobacter asburiae, isolated from Cattleya walkeriana (Orchidaceae) roots and identified by the 16S rRNA gene sequencing analysis, was strictly regulated by phosphorus ions, with its optimal activity being observed at an inorganic phosphate concentration of 7 mM. At the optimum pH 3.5, intact cells released p-nitrophenol at a rate of 350.76 ± 13.53 nmol of p-nitrophenolate (pNP)/min/108 cells. The membrane-bound enzyme was obtained by centrifugation at 100,000 × g for 1 h at 4°C. p-Nitrophenylphosphate (pNPP) hydrolysis by the enzyme follows “Michaelis-Menten” kinetics with V = 61.2 U/mg and K0.5 = 60 μM, while ATP hydrolysis showed V = 19.7 U/mg, K0.5 = 110 μM, and nH = 1.6 and pyrophosphate hydrolysis showed V = 29.7 U/mg, K0.5 = 84 μM, and nH = 2.3. Arsenate and phosphate were competitive inhibitors with Ki = 0.6 mM and Ki = 1.8 mM, respectively. p-Nitrophenyl phosphatase (pNPPase) activity was inhibited by vanadate, while p-hydroxymercuribenzoate, EDTA, calcium, copper, and cobalt had no inhibitory effects. Magnesium ions were stimulatory (K0.5 = 2.2 mM and nH = 0.5). Production of an acid ectophosphatase can be a mechanism for the solubilization of mineral phosphates by microorganisms such as Enterobacter asburiae that are versatile in the solubilization of insoluble minerals, which, in turn, increases the availability of nutrients for plants, particularly in soils that are poor in phosphorus.  相似文献   

7.
Seasonal changes in the characteristics of chlorophyll fluorescence were studied in the bark of several species of trees originating in various climatic zones: Siberian cedar (Pinus sibirica), larch (Larix sibirica), eastern arborvitae (Thuja occidentalis), pendent white birch (Betula pendula), wild black cherry (Padus virginiana), horse chestnut (Aesculus hippocastanum), red oak (Quercus rubra), Manchurian catalpa (Catalpa bungei), linden (Tilia cordata), goat willow (Salix caprea), Amur cherry (Padus maackii), and apple Korichnaya (Malus domestrica B.). Tree bark has a sufficient amount of chlorophyll for measuring the parameters of chlorophyll fluorescence throughout the year. The relative yield of the variable fluorescence of chlorophyll (F v/F m) can be used to assess seasonal changes in the physiological state of various trees.  相似文献   

8.
It has been shown that micromycetes Aspergillus ustus 1 and Tolypocladium inflatum k1 secrete proteolytic enzymes that possess high collagenolytic, fibrinolytic, and elastolytic activity. The activity of proteinases hydrolyzing fibrillar proteins, which was determined by the cleavage of azo-collagen, was 122.6 × 10–3EAzc/mL in A. ustus 1 and 69.7 × 10–3EAzc/mL in T. inflatum k1 (EAzc is the amount of azocollagen cleaved in 1 min (μg). The maximum values of activity were observed during submerged cultivation of A. ustus 1 for 4 days and of T. inflatum k1 for 5 days. It has been shown that the maximum of collagenolytic and general proteolytic activity during the cultivation of A. ustus 1 are time-separated, unlike T. inflatum k1, which, presumably, can simplify the procedure for obtaining proteinases active against fibrillar proteins.  相似文献   

9.
The aim of this study was to evaluate probiotic properties of antimicrobial Lactobacillus plantarum VJC38 in vitro. L. plantarum VJC38 was isolated from the crop of broiler chicken and characterized using dnaK gene sequence. The inhibitory activities of L. plantarum VJC38 against bacterial and fungal pathogens were evaluated. Antifungal compounds secreted by the strain VJC38 were identified using Gas Chromatography and Mass Spectrometry (GC-MS). The strain was evaluated for its tolerance to low pH, resistance to bile salts, auto-aggregation, co-aggregation with pathogenic Escherichia coli, cell surface hydrophobicity, cholesterol lowering activity, β-galactosidase production, adhesion ability to Caco-2 cells, mucin degradation, hemolytic activity and biogenic amine production. Phylogenetic analysis of dnaK gene of bacterial strain VJC38 showed 99% sequence similarity to Lactobacillus plantarum var. plantarum. It showed effective inhibition against food spoiling and pathogenic organisms like Escherichia coli, Listeria monocytogenes, Staphylococcus aureus, Aspergillus niger, Penicillium expansum and Eurotium species. The antifungal compound phenol- 2,4-bis(1,1-dimethylethyl) (PD) was identified in the culture filtrate of L. plantarum VJC38 and reported to have inhibition against Aspergillus species. L. plantarum VJC38 exhibited tolerance to low pH, resistance to bile salts, bile salt hydrolase activity, auto-aggregation (87.5%), co-aggregation with Escherichia coli (55.7%), cholesterol lowering activity (64%), β-galactosidase production (1206 MU), adherence to Caco-2 cells (11%), negative for mucin degradation, hemolytic activity and biogenic amine production. L. plantarum VJC38 could be a good candidate for further investigation in vivo to elucidate its health benefits and to evaluate its technological properties as a bio-protective strain.  相似文献   

10.
Bacterial enzymes capable of nitrile hydrolysis have significant industrial potential. Microbacterium sp. AJ115, Rhodococcus erythropolis AJ270 and AJ300 were isolated from the same location in England and harbour identical nitrile hydratase/amidase gene clusters. Strain AJ270 has been well studied due to its nitrile hydratase and amidase activity. R. erythropolis ITCBP was isolated from Denmark and carries a very similar nitrile hydratase/amidase gene cluster. In this study, an identical nitrilase gene (nit1) was isolated from the four strains, and the nitrilase from strain AJ270 cloned and expressed in Escherichia coli. Analysis of the recombinant nitrilase has shown it to be functional with activity demonstrated towards phenylacetonitrile. A real-time PCR TaqMan® assay was developed that allowed nit1 detection directly from soil enrichment cultures without DNA extraction, with nit1 detected in all samples tested. Real-time PCR screening of isolates from these soils resulted in the isolation of nit1 and also very similar nitrilase gene nit2 from a number of Burkholderia sp. The genes nit1 and nit2 have also been detected in many bacteria of different genera but are unstable in these isolates. It is likely that the genes were acquired by horizontal gene transfer and may be widespread in the environment.  相似文献   

11.
Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 → 4)-2-acetamido-2-deoxy-β-d-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N′-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-β-d-glucosaminide (1 → 4)-β-linkages and are thus “exo-chitobiose hydrolases.” In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer variabilis, respectively. Both FbalChi18A and MvarChi18A were recombinantly expressed in Escherichia coli and were confirmed to exert exo-chitobiose hydrolase activity on chito-oligosaccharides, but differed in temperature and pH activity response profiles. Amino acid sequence comparison of the catalytic β/α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools for utilization of chitin as an N-acetylglucosamine donor substrate via chitobiose.  相似文献   

12.
Chemical investigation of the freshwater microalga Chlorella sorokiniana led to the isolation of a monogalactosyldiacylglycerol (MGDG)-rich fraction possessing dose-dependent inhibitory activity against pancreatic lipase activity. The MGDG-rich fraction contains 12 MGDGs identified by LC/HRMS analysis. Among them, three MGDGs were new compounds, namely, (2S)-1-O-(7Z,10Z-hexadecadienoyl)-2-O-(7Z,10Z,13Z-hexadecatrienoyl)-3-O-β-D-galactopyranosylglycerol (1), (2S)-1-O-linoleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (6), and (2S)-1-O-oleoyl-2-O-(7Z,10Z-hexadecadienoyl)-3-O-β-D-galactopyranosylglycerol (8). The major galactolipids were isolated by semipreparative HPLC and tested for their effect toward pancreatic lipase inhibitory activity. All the tested MGDGs showed significant reduction of pancreatic lipase activity indicating possible beneficial use for management of lipase-related disorders such as obesity.  相似文献   

13.

Objectives

To enhance activity of cis-epoxysuccinate hydrolase from Klebsiella sp. BK-58 for converting cis-epoxysuccinate to tartrate.

Results

By semi-saturation mutagenesis, all the mutants of the six important conserved residues almost completely lost activity. Then random mutation by error-prone PCR and high throughput screening were further performed to screen higher activity enzyme. We obtained a positive mutant F10D after screening 6000 mutations. Saturation mutagenesis on residues Phe10 showed that most of mutants exhibited higher activity than the wild-type, and the highest mutant was F10Q with activity of 812 U mg?1 (k cat /K m , 9.8 ± 0.1 mM?1 s?1), which was 230 % higher than that of wild-type enzyme 355 U mg?1 (k cat /K m , 5.3 ± 0.1 mM?1 s?1). However, the thermostability of the mutant F10Q slightly decreased.

Conclusions

The catalytic activity of a cis-epoxysuccinate hydrolase was efficient improved by a single mutation F10Q and Phe10 might play an important role in the catalysis.
  相似文献   

14.

Key message

A Brd2 allele suppresses heading date by altering the expression of heading date regulators such as OsMADS50 , and also negatively regulates chlorophyll biosynthesis.

Abstract

Heading date and plant height are important determinants of yield in rice (Oryza sativa L.). In this study, we characterized a late heading, dwarf mutant known as lhdd10 selected following ethyl methane sulfonate (EMS)-treatment of ssp. indica cultivar 93-11. lhdd10 showed late heading, dwarfness and slightly darker-green leaves than wild-type 93-11 under long-day and short-day conditions. We isolated lhdd10 by map-based cloning; it encoded a putative FAD-linked oxidoreductase protein (a brassinosteroid biosynthetic gene) that localized to the nucleus. LHDD10 was constitutively expressed in various tissues, but more so in shoot apices and panicles. Our data showed that lhdd10 influences heading date by controlling the expression of heading date regulators, such as OsMADS50 in both LD and SD conditions. lhdd10 also negatively regulated expression of chlorophyll biosynthetic genes to reduce the chlorophyll content. Our data indicated that BRs play important roles in regulating heading date and chlorophyll biosynthesis. This work provides material that will allow study of how BRs regulate heading date in rice.
  相似文献   

15.
The aim of this study is to isolate and identify Lactobacillus plantarum isolates from traditional cheese, Kouzeh, and evaluate their antimicrobial activity against some food pathogens. In total, 56 lactic acid bacteria were isolated by morphological and biochemical methods, 12 of which were identified as Lactobacillus plantarum by biochemical method and 11 were confirmed by molecular method. For analyzing the antimicrobial activity of these isolates properly, diffusion method was performed. The isolates were identified by 318 bp band dedicated for L. plantarum. The isolated L. plantarum represented an inhibitory activity against four of the pathogenic bacteria and showed different inhibition halos against each other. The larger halos were observed against Staphylococcus aureus and Staphylococcus epidermidis (15 ± 0.3 and 14.8 ± 0.7 mm, respectively). The inhibition halo of Escherichia coli was smaller than that of other pathogen and some L. plantarum did not show any inhibitory activity against E. coli, which were resistant to antimicrobial compounds produced by L. plantarum. The isolated L. plantarum isolates with the antimicrobial activity in this study had strong probiotic properties. These results indicated the nutritional value of Kouzeh cheese and usage of the isolated isolates as probiotic strains.  相似文献   

16.
The role of 4.1 or 8.2 μM meta-topolin (mT) on shoot multiplication, rooting and ex vitro acclimatization of micropropagated Corylus colurna L., a promising non-suckering rootstock for hazelnut (Corylus avellana L.), was examined in comparison to N6-benzyladenine (BA), the most used cytokinin in tissue culture of Corylus spp. The influence of 8.2 μM mT and BA on photosynthetic pigments content and antioxidant enzymes activity, catalase (CAT) and guaiacol peroxidase (POD), in regenerated shoots, and on the preparation of the rootstock for micrografting was also evaluated. The highest shoot multiplication was recorded on medium containing 8.2 μM mT and an overall positive effect of mT on growth and quality of micropropagated shoots was found. The highest chlorophyll a content (1.236 mg g?1 fresh weight, FW) and chlorophyll a/b ratio (2.48), and the lowest total carotenoids content (0.292 mg g?1 FW) and CAT activity (25.8 μmol min?1 mg?1 protein) were detected after 8.2 μM mT application, while no significant differences were found in chlorophyll b content and POD activity between the two cytokinins. The best rhizogenesis response (98% for 4.1 μM and 100% for 8.2 μM mT) and ex vitro acclimatization competence (higher than 78%) were exhibited from shoots multiplied on mT. Furthermore, the multiplication of rootstock on mT allowed obtaining the highest (70%) response of successful micrografting. The present findings provide the first evidence of the successful applicability of mT in C. colurna tissue culture and development of micrografted plantlets.  相似文献   

17.
The impact that the parasitic plant field dodder (Cuscuta campestris Yunk.) has on chlorophyll fluorescence and chlorophyll content of infested alfalfa (Medicago sativa L.) and sugar beet (Beta vulgaris L.) was examined under controlled conditions. Several parameters of chlorophyll fluorescence were measured in infested and non-infested alfalfa and sugar beet plants over a period of twenty days, beginning with the day of infestation. Chlorophyll contents (total, relative and ratio of chlorophyll a to b) were determined 1, 7, 14 and 20 days after infestation (DAI). Field dodder was found to affect both the total and relative chlorophyll contents in infested alfalfa and sugar beet, causing significant reduction in chlorophyll content in both host plants. This parasitic plant also affects a number of parameters of chlorophyll fluorescence (Fo, Fv/Fm, ΦPSII, Fv and IF), showing that these parameters may be considered sensitive indicators of the impact that field dodder has on its host plants.  相似文献   

18.
β-glucosidase (BG) was believed to take part in abscisic acid (ABA) synthesis via hydrolysis of ABA glucose ester to release active ABA during plant growth and development. However, there is no genetic evidence available to indicate the role of genes during fruit ripening. Here, the expression patterns of three genes (VvBG1, VvBG2, and VvBG3) encoding β-glucosidase were analyzed during grape fruit development, and it was found that β-glucosidase activity increased in grape fruit in response to various stresses. Furthermore, to verify the function of β-glucosidase during fruit ripening, heterogeneous expression of the VvBG1 gene in strawberry fruit was validated, and the results showed that the VvBG1 over-expression increased β-glucosidase and promoted the fruit ripening process in strawberry. In addition, we found that ABA contents increased in the VvBG1 over-expression of strawberry fruit, which induced fruit anthocyanin, soluble solid accumulation, and fruit softening. Moreover, genes related to coloring (CHS, CHI, F3H, and UFGT), softening (PG1, PL1, and EXP1), and aroma (SAAT, and QR) were up-regulated. This work will elucidate the specific roles of VvBGs in the synthesis of ABA and provide some new insights into the ABA-controlled grape ripening mechanism.  相似文献   

19.
Clostridium difficile infection (CDI) is one of the most common nosocomial infections. Dysbiosis of the gut microbiota due to consumption of antibiotics is a major contributor to CDI. Recently, fecal microbiota transplantation (FMT) has been applied to treat CDI. However, FMT has important limitations including uncontrolled exposure to pathogens and standardization issues. Therefore, it is necessary to evaluate alternative treatment methods, such as bacteriotherapy, as well as the mechanism through which beneficial bacteria inhibit the growth of C. difficile. Here, we report bile acid-mediated inhibition of C. difficile by Bacteroides strains which can produce bile salt hydrolase (BSH). Bacteroides strains are not commonly used to treat CDI; however, as they comprise a large proportion of the intestinal microbiota, they can contribute to bile acid-mediated inhibition of C. difficile. The inhibitory effect on C. difficile growth increased with increasing bile acid concentration in the presence of Bacteroides ovatus SNUG 40239. Furthermore, this inhibitory effect on C. difficile growth was significantly attenuated when bile acid availability was reduced by cholestyramine, a bile acid sequestrant. The findings of this study are important due to the discovery of a new bacterial strain that in the presence of available bile acids inhibits growth of C. difficile. These results will facilitate development of novel bacteriotherapy strategies to control CDI.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号