首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To date, the molecular mechanisms underlying the osmoregulation of pollen grains (PGs) related to the maintenance of their water status and allowing pollen tubes (PTs) to regulate concentrations in them of osmolytes and transmembrane water transport remain to be not so far characterized. In the present work, the data on the participation of IAA and ABA in the osmoregulation of germinating in vitro petunia male gametophyte were obtained. It has been established that the growth-stimulating effect of these phytohormones is due to their action on intracellular pH (pHc), the membrane potential of plasmalemma (PM), the activity of PM H+-ATPase, K+-channels in the same membrane and organization of actin cytoskeleton (AC). Two possible targets of the action of these compounds are revealed. These are represented by (1) PM H+-ATPase, electrogenic proton pump responsible for polarization of this membrane, and (2) Ca2+-dependent K+-channels. The findings of the present work suggest that the hormone-induced pHc shift is involved in cascade of the events including the functioning of pH-dependent K+-channels. It was shown that the hormoneinduced hyperpolarization of the PM is a result of stimulation of electrogenic activity of PM H+-ATPase and the hormonal effects are mediated by transient elevation in the level of free Ca2+ in the cytosol and generation of reactive oxygen species (ROS). The results on the role of K+ ions in the control of water-driving forces for transmembrane water transport allowed us to formulate the hypothesis that IAA and ABA stimulate germination of PGs and growth of PTs by activating K+-channels. In addition, the studies performed showed that the AC of male gametophyte is sensitive to the action of exogenous phytohormones, with to more extent to the action of IAA. As judged by the action of latrunculin B (LB) the AC may serve as the determinant of the level of endogenous phytohormones that most likely participate in the regulation of the polar growth of PTs impacting on the pool of F-actin in their apical and subapical zones.  相似文献   

2.
As established by us earlier, ethylene behaves as a regulator of germination, development, and growth of male gametophyte during the progamic phase of fertilization. However, the mechanisms of the regulation of these processes remain so far unstudied. It is believed that the main factor providing variety of the ethylene responses is its interaction with other phytohormones. According to our working hypothesis, ethylene controls germination of pollen grains (PGs) and growth of pollen tubes (PTs) by interacting with auxin, which, as the available data indicate, is likely a key regulator of plant cell polarization and morphogenesis and one of the factors modulating the biosynthesis of ethylene at the level of ACC-synthase gene expression. In the present work, on germinating in vitro male gametophyte and the pollen-stigma system for petunia (Petunia hybrida L.) effects of phytohormones (ethylene and IAA) and known blockers repressing ethylene reception (1-methylcyclopropene, 1-MCP), the synthesis of ACC (amino oxyacetic acid, AOA) and transport IAA (triyodbenzoynaya acid, TYBA) on PGs germination, PTs growth and the synthesis of ACC were investigated. According to the data obtained, exogenous ethylene and IAA stimulated both PGs germination and PTs growth. 1-MCP and TYBA completely inhibited the first process, whereas IAA abolished the inhibitory action of 1-MCP and AOA on both the above processes. Etrel only partially weakened the inhibitory effect of TYBA. Examination of ACC synthesis modulation with AOA showed that IAA does not affect the level of ACC in germinating in vitro male gametophyte and nonpollinated stigmas, while this phytohormone insignificantly raised the level of ACC and abolished the inhibitory effect of AOA on its synthesis in the pollenstigma system. Pollination of stigmas with the pollen preliminarily treated with 1-MCP led to 2.5-fold decline in both the rate of PT growth and the level of ACC. At the same time, IAA abolished the inhibitory action of 1-MCP recovering the synthesis of ACC and growth of PTs to the control values. All these results, taken together, provide evidence for the interaction of the signal transduction pathways of ethylene and auxin at the level of ACC biosynthesis in the course of germination and growth of petunia male gametophyte during the progamic phase of fertilization.  相似文献   

3.
Previous results showed that in short-term NaCl-treated beans increased leaf abscisic acid (ABA) concentration was triggered by Na+ but not by Cl-. In this work, the specificity of ABA signaling for Na+ homeostasis was studied by comparing the plant’s responses to solutions that modified accumulation of ABA and/or Na+ uptake and distribution, such as supplemental Ca2+, increased nutrient strength, different isosmotic composition, application of exogenous ABA, fluridone (an ABA inhibitor) and aminooxiacetic acid (AOA, an ethylene inhibitor). After fluridone pretreatment, salt-treated beans had lower Na+ uptake and higher leaf Na+ exclusion capacity than non-pretreated plants. Moreover, Na+ uptake was increased and leaf Na+ exclusion was decreased by AOA and ABA. NaCl and KCl similarly increased leaf ABA and decreased transpiration rates, whereas supplemental Ca2+ and increased strength nutrient solution decreased leaf ABA and leaf Na+. These results show (1) a non-ion-specific increase in ABA that probably signaled the osmotic component of salt, and (2) increased ABA levels that resulted in higher leaf Na+ concentrations due to lower Na+ exclusion or increased root-shoot Na+ translocation.  相似文献   

4.
Hibiscus rosa-sinensis L. flowers (cv La France) senesce and die over a 12-h period after opening. The aim of this study was to examine the physiological mechanisms regulating the senescence process of ephemeral hibiscus flowers. Different flower stages and floral organs were used to determine whether any interaction existed during flower senescence between endogenous abscisic acid (ABA) and the predisposition of the tissue to ethylene synthesis. This was carried out on whole flowers treated with promoters and inhibitors of ethylene and ABA synthesis or a combination of them. Treatments with 1-aminocyclopropane-1-carboxylic acid (ACC), a precursor of ethylene biosynthesis, enhanced flower senescence, whereas amino-oxyacetic acid (AOA) and fluridone, an ethylene and an ABA inhibitor, respectively, extended flower longevity. These effects were more significant when applied before anthesis. Ethylene evolution was substantially reduced in all organs from open and senescent flowers treated with fluridone and AOA. Similarly, endogenous ABA accumulation was negatively affected by AOA and fluridone treatments. Application of fluridone plus ACC reduced ethylene evolution and increased ABA content in a tissue-specific manner but did not overcome the inhibitor effect on flower longevity. AOA plus fluridone treatment slightly accelerated flower longevity compared to AOA-treated flowers. Application of ABA alone promoted senescence, suppressed ethylene production, and, when applied with fluridone, countered the fluridone-induced increase in flower longevity. Taken together, these results suggest that the senescence of hibiscus flowers is an endogenously regulated ethylene- and ABA-dependent process.  相似文献   

5.
A lipophilic potential-sensitive cationic dye, safranin O was employed to examine the influence of exogenous IAA on plasma membrane electric potential in germinating pollen grains of petunia (Petunia hybrida L.) with the aim of elucidating whether the electrogenic H+-ATPase activity of the plasma membrane is sensitive to this phytohormone. The addition of IAA to pollen grains suspended in a K+-free medium was found to induce significant hyperpolarization of the plasmalemma. This effect was fully blocked by orthovanadate, Ca2+-active reagents (EGTA and verapamil), and by the inhibitor of NADPH oxidase of plasmalemma, diphenyleneiodonium (DPI). It was also strongly inhibited by the presence of K+ at centimolar concentrations in the medium. The hyperpolarizing influence of IAA was mimicked by application of hydrogen peroxide; furthermore, the H2O2-induced shift of the membrane potential was inhibited by the same agents that suppressed the IAA-induced hyperpolarization of the pollen plasmalemma. It is concluded that the IAAinduced hyperpolarization of the plasma membrane in male gametophytes of petunia is caused by the enhanced electrogenic activity of ATP-dependent proton pump in the presence of this phytohormone. It is supposed that the effect of IAA is mediated by the transient increase in cytosolic Ca2+ level and by generation of reactive oxygen species (ROS). Possible mechanisms underlying the mediatory role of calcium and ROS in the auxin signal transduction and the resulting stimulation of electrogenic activity of the plasma membrane H+-ATPase are discussed.  相似文献   

6.
Plasmalemma electrical properties were used to investigate K+ transport and its control in internodal cells of Chara corallina Klein ex Willd., em R.D.W. Cell exposure to solutions containing 10 mm KCl caused the potential, normally −250 millivolts (average), to depolarize in two steps. The first step was a 21 millivolt depolarization that lasted from 1 to 40 minutes. The second step started with an action potential and left the membrane potential at −91 millivolts, with a 10-fold reduction in resistance. We suggest that the second step was caused by the opening of K+ -channels in the membrane. This lowered the resistance and provided a current pathway that partially short-circuited the electrogenic pump. Although largely short-circuited, the electrogenic pump was still operating as indicated by: (a) the depolarized potential of −91 millivolts was more negative than Ek (=−42 millivolts in 10 mm K+); (b) a large net K+ uptake occurred while the cell was depolarized; (c) both the electrogenic pump inhibitor, diethylstilbestrol, and the sulfhydryl-reagent N-ethylmaleimide (which increased the passive membrane permeability) further depolarized the potential in 10 mm KCl.A two-phase recovery back to normal cell potentials occurred upon lowering the K+ concentration from 10 to 0.2 mm. The first phase was an apparent Nernst potential response to the change in external K+ concentration. The second phase was a sudden hyperpolarization accompanied by a large increase in membrane resistance. We attribute the second phase to the closing of K+ -channels and the removal of the associated short-circuiting effect on the electrogenic pump, thereby allowing the membrane to hyperpolarize. Further experiments indicated that the K+ -channel required Ca2+ for normal closure, but other ions could substitute, including: Na+, tetraethylammonium, and 2,4,6-triaminopyrimidine. Apparently, K+ -channel conductance is determined by competition between Ca2+ and K+ for a control (gating?) binding site.  相似文献   

7.
We investigated dynamics of the content of 1-aminocyclopropane-1-carboxylic acid (ACC) and ethylene production in male gametophyte development and germination in fertile (self-compatible and selfincompatible) and sterile clones of petunia. Fertile male gametophyte development was accompanied by two peaks of ethylene production by anther tissues. The first peak occurred during the microspore development simultaneously with the degeneration of both the tapetal tissues and the middle layers of the anther wall. The second peak coincided with dehydration and maturation of pollen grains. In the anther tissues of the sterile line of petunia, tenfold higher ethylene production was observed at the meiosis stage compared with that in fertile male gametophytes. This fact correlated with the degeneration of both microsporocytes and tapetal tissues. Exogenously applied ethylene (1–100 ppm) induced a degradation of the gametophytic generation at the meiosis stage. According to the obtained data, ethylene synthesis in germinating male gametophyte is provided by a 100-fold ACC accumulation in mature pollen grains. The male gametophyte germination, both in vitro, on the culture medium, and in vivo, on the stigma surface, was accompanied by an increase in ethylene production. Depending on the type of pollination, germination of pollen on the stigma surface and the pollen tube growth in the tissues of style were accompanied by various levels of ACC and ethylene release. The male gametophyte germination after self-compatible pollination was accompanied by higher content of ACC as compared with the self-incompatible clone, whereas, after the self-incompatible pollination, we observed a higher level of ethylene production compared with compatible pollination. For both types of pollination, ACC and ethylene were predominantly produced in the stigma tissues. Inhibitor of ethylene action, 2,5-norbornadiene (NBN), blocked both the development and germination of the male gametophyte. These results suggest that ethylene is an important factor in male gametophyte development, germination, and growth at the progamic phase of fertilization.  相似文献   

8.
Germination of tomato cv. New Yorker seed is inhibited at 35°C. This thermoinhibition was partially counteracted by application of GA4+7 alone, the compound applied in combination with ACC or ethephon markedly enhancing the process. The latter compound alone was not able to induce germination at 35 °C. Thermoinhibition of seeds at 35 °C was also counteracted by fluridone, an inhibitor of ABA biosynthesis. At 25 °C, an optimal temperature, ABA inhibited germination of New Yorker seeds. Although another known growth inhibitor MeJA, when applied at an optimal temperature (25 °C), had also a slightly inhibitory effect on germination of those seeds and clearly delayed the process, inhibitors of its biosynthetic pathway (ibuprofen, indoprofen, antypiryne and salicylic acid) did not remove thermoinhibition at 35 °C. An increase in endo-β-mannanase activity after 24 hours of incubation at 35 °C was observed in the seeds incubated in the presence of gibberellins, ACC, ethephon, fluridone used alone and in combinations, but it was not clearly correlated with the effects of these compounds on alleviation of seed germination. However, fluridone present in the same incubation medium at 35 °C with ABA was able to counteract the inhibitory effect of ABA on endo-β-mannanase activity. The results of our study suggest that gibberellins, ethylene (produced from ACC or ethephon) and ABA, but not jasmonates, regulate tomato seed germination at supraoptimal temperatures. Alleviation of thermoinhibition of New Yorker seed germination by plant growth regulators and fluridone is partially associated with their controlling endo-β-mannanase activity.  相似文献   

9.
Ion conduction in K+-channels is usually described in terms of concerted movements of K+ progressing in a single file through a narrow pore. Permeation is driven by an incoming ion knocking on those ions already inside the protein. A fine-tuned balance between high-affinity binding and electrostatic repulsive forces between permeant ions is needed to achieve efficient conduction. While K+-channels are known to be highly selective for K+ over Na+, some K+ channels conduct Na+ in the absence of K+. Other ions are known to permeate K+-channels with a more moderate preference and unusual conduction features. We describe an extensive computational study on ion conduction in K+-channels rendering free energy profiles for the translocation of three different alkali ions and some of their mixtures. The free energy maps for Rb+ translocation show at atomic level why experimental Rb+ conductance is slightly lower than that of K+. In contrast to K+ or Rb+, external Na+ block K+ currents, and the sites where Na+ transport is hindered are characterized. Translocation of K+/Na+ mixtures is energetically unfavorable owing to the absence of equally spaced ion-binding sites for Na+, excluding Na+ from a channel already loaded with K+.  相似文献   

10.
Proton efflux from corn roots induced by tripropyltin   总被引:1,自引:1,他引:0       下载免费PDF全文
Tripropyltin restores medium acidification by washed corn root tissue in which electrogenic H+ efflux has been blocked by ATPase inhibitors or injury. However, the restored H+ efflux is not electrogenic and will not drive K+ influx, and, by itself, tripropyltin is inhibitory to K+ influx. Tripropyltin elicits a 5-fold increase in endogenous chloride efflux, and Cl/OH exchange can, thus, account for the observed acidification of the medium. This explanation cannot be applied equally to the acidification produced by the K+/H+ exchanging ionophore nigericin.  相似文献   

11.
Summary The effect of abscisic acid (ABA) on uptake of potassium (86Bb+ or 42K+) by Avena sativa L. coleoptile sections was investigated. ABA lowered the potassium uptake rate within 30 min after its application and inhibition reached a maximum (ca. 75%) after 2 h. The inhibition of K+ uptake increased with ABA concentration over a range of 0.03 to 10 g/ml ABA. At a higher K+ concentration (20 mM) the percentage inhibition decreased. The percentage inhibition of K+ uptake by ABA remained constant with external K+ varied from 0.04 to 1.0 mM. After a loading period in 20 mM K+ (86Rb+), apparent efflux of potassium was only slightly increased by ABA. Experiments in which growth was greatly reduced by mannitol or by omission of indole-3-acetic acid from the medium indicated there was no simple quantitative correspondence between ABA inhibition of coleoptile elongation and ABA inhibition of K+ uptake. Chloride uptake was also inhibited by ABA but to a smaller degree than was K+ uptake. No specificity for counterions was observed for K+ uptake. Uptake of 3,0-methylglucose and proline were inhibited by ABA to a much smaller extent (14 and 11%) than that of K+, a result which suggests that ABA acts on specific ion uptake mechanisms.  相似文献   

12.
Patch clamping whole-cell recording techniques were applied to study the inward K+ -channels inArabidopsis root cortex cells. The inward K+ -channels in the plasma membranes of the root cortex cell protoplasts were activated by hyperpolarized membrane potentials. The channels were highly selective for K+ ions over Na+ ions. The channel activity was significantly inhibited by the external TEA+ or Ba2+. The changes in cytoplasmic Ca2+ concentrations did not affect the whole-cell inward K+ -currents. The possible association between the channel selectivity to K+ and Na+ ions and plant salt-tolerance was also discussed.  相似文献   

13.
Long-term effects of 1-naphtaleneacetic acid (NAA), benzyladenine (BA), gibberellic acid (GA3), abscisic acid (ABA) and ethylene on K+ levels, K+ uptake and translocation to the shoot were studied in young wheat plants (Triticum aesticum L. cv. Martonvásári-8) grown at different K+ supplies. Na+ levels and K+/Na+ selectivity were also investigated. Both in shoots and roots, NAA, BA and ABA decreased K+ and Na+ levels more effectively in high-K+ plants than in low-K+ plants. GA, and ethylene did not influence K+ and Na+ levels. K+/Na+ selectivity in roots of low-K+ plants was increased in favour of K+ by BA, NAA and to a lesser extent by ABA. In high-K+ plants only BA increased the K+/Na+ ratio, whereas the effects of the other hormones were the opposite (NAA) or less pronounced (ABA). K+(86Rb) uptake was inhibited by NAA and BA in low-K+ plants but not in high-K+ plants. K+(86Rb) uptake was inhibited throughout by 10 μM ABA. K+(86Rb) translocation to the shoot was influenced by the hormones similarly to the uptake patterns, with the exception of ABA, which inhibited translocation in low-K+ plants but not in high-K+ plants. The results show that hormonal effects may quantitatively and qualitatively be modified by K+ levels in the plant and that internal K+ concentration may play a role in the mechanisms regulating the effects of NAA, BA and ABA but probably not in those of GA3 or ethylene.  相似文献   

14.
Seed germination in a male-sterile 7B-1 mutant in tomato is reletively more resistant to the inhibitory effects of a high osmoticum induced by mannitol and polyethylene glycol, to various salts, including NaCl, Na2SO4, KCl and K2SO4, and to low-temperature stress, compared to the wild-type (WT) seeds. The inhibitory effects of various stresses could be partly or completely overcome by fluridone (FLU), an inhibitor of abscisic acid (ABA) biosynthesis. However, lower concentration of fluridone was required for the 7B-1 mutant than for WT seeds, and the mutant seeds were more sensitive to the inhibitory effects of exogenous ABA. The data suggest that 7B-1 seed has a pre-existing level of elevated ABA which imparts resistance to the various stresses. The ability to regulate male sterility in the 7B-1 mutant by photoperiod, as previously reported by Sawhney (1997), and its resistance to abiotic stresses, as reported here, makes this a useful system for tomato breeding and in hybrid programs. Received: 11 May 2000 / Accepted: 4 June 2000  相似文献   

15.
Kikuchi A  Sanuki N  Higashi K  Koshiba T  Kamada H 《Planta》2006,223(4):637-645
Studies of carrot embryogenesis have suggested that abscisic acid (ABA) is involved in somatic embryogenesis. A relationship between endogenous ABA and the induction of somatic embryogenesis was demonstrated using stress-induced system of somatic embryos. The embryonic-specific genes C-ABI3 and embryogenic cell proteins (ECPs) were expressed during stress treatment prior to the formation of somatic embryos. The stress-induction system for embryogenesis was clearly distinguished by two phases: the acquisition of embryogenic competence and the formation of a somatic embryo. Somatic embryo formation was inhibited by the application of fluridone (especially at 10−4 M), a potent inhibitor of ABA biosynthesis, during stress treatment. The inhibitory effect of fluridone was nullified by the simultaneous application of fluridone and ABA. The level of endogenous ABA increased transiently during stress. However, somatic embryogenesis was not significantly induced by the application of only ABA to the endogenous level, in the absence of stress. These results suggest that the induction of somatic embryogenesis, in particular the acquisition of embryogenic competence, is caused not only by the presence of ABA but also by physiological responses that are directly controlled by stresses.  相似文献   

16.
Homblé F 《Plant physiology》1987,84(2):433-437
The biophysical properties of voltage-dependent K+-channels of protoplasmic droplets of Chara corallina Klein ex Willd., em, R.D.W. were investigated using the tight-seal whole cell method. Two potassium currents were observed in voltage-clamp mode and they can be used to explain the transient membrane potential time course observed in current-clamp mode. The K+-channels are identified by the effect of tetraethylammonium chloride which blocks both currents. A two-state, constant dipole moment model is used to fit the voltage-conductance curve. From this model the minimum equivalent gating charge involved in the gating mechanism of K+-channels of Chara can be estimated.  相似文献   

17.
In Anemia phyllitidis gametophytes two of the ethylene perception inhibitors (silver ions, Ag+; 2,5-norbornadiene, NBD) caused opposite effects on GA3-induced antheridia formation and on the increment of ACC (1-aminocyclopropane-1-carboxylic acid) content accompanying this process. Ag+ enhanced while NBD inhibited GA3-induced antheridiogenesis and each inhibitor modulated the level of ACC in a different manner. Cobalt ions (Co2+) and aminooxyacetic acid (AOA; the ethylene synthesis inhibitors), also modulated the level of GA3-induced ACC content differently. These results strongly confirm the earlier suggestion that ethylene plays a role of the second messenger in GA3-induced antheridiogenesis during “induction” and “expression” phases, and the 3rd h of the former phase is the time when elevation of ACC content induced while in the 6th h inhibited antheridiogenesis. Timing of changes in ACC content and morphogenetic effects of GA3-induced antheridiogenesis in A. phyllitidis gametophytes allowed to indicate that AOA together with NBD could participate in one while Co2+ and Ag+ in another ethylene synthesis and signaling pathway.  相似文献   

18.
 Effects of Ca2+-activated K+ and voltage-activated K+-channel agonists and antagonists on the myoelectrical and contractile activity of a locus of the small bowel are simulated numerically. The model assumes that the electrical activity of smooth muscle syncytium is defined by kinetics of a mixture of L- and T-type Ca2+-channels, Ca2+-activated K+ and voltage-activated K+-channels, and leak Cl--channels, and that the smooth muscle syncytium of the locus is a null-dimensional contractile system. The results of modelling, both qualitatively and quantitatively, reproduce the effects of forskolin, lemakalim, phencyclidine, charybdotoxin and high concentration of external K+ ions, on gastrointestinal motility. This is confirmed by comparison with experimental observations conducted on the smooth muscle preparations of different species. Received: 19 February 1996 / Accepted in revised form: 26 June 1996  相似文献   

19.
Seed germination is a complex trait determined by both quantitative trait loci (QTLs) and environmental factors and also their interactions. In this study, we mapped one major QTLqSE3 for seed germination and seedling establishment under salinity stress in rice. To understand the molecular basis of this QTL, we isolated qSE3 by map‐based cloning and found that it encodes a K+ transporter gene, OsHAK21. The expression of qSE3 was significantly upregulated by salinity stress in germinating seeds. Physiological analysis suggested that qSE3 significantly increased K+ and Na+ uptake in germinating seeds under salinity stress, resulting in increased abscisic acid (ABA) biosynthesis and activated ABA signaling responses. Furthermore, qSE3 significantly decreased the H2O2 level in germinating seeds under salinity stress. All of these seed physiological changes modulated by qSE3 might contribute to seed germination and seedling establishment under salinity stress. Based on analysis of single‐nucleotide polymorphism data of rice accessions, we identified a HAP3 haplotype of qSE3 that was positively correlated with seed germination under salinity stress. This study provides important insights into the roles of qSE3 in seed germination and seedling establishment under salinity stress and facilitates the practical use of qSE3 in rice breeding.  相似文献   

20.
彭云玲  保杰  叶龙山  王永健  燕利斌 《生态学报》2014,34(24):7320-7328
盐胁迫影响植物组织的离子分布,不同品种间存在差异。以玉米耐盐自交系81162和8723及盐敏感自交系P138为材料,研究了不同浓度(0、60、140、220 mmol/L)Na Cl胁迫下萌动期种子和幼苗的不同部位中Na+、K+、Ca2+含量以及K+/Na+和Ca2+/Na+比值的变化,旨在探讨不同自交系耐盐性差异的原因。结果表明,在萌动种子中,3个玉米自交系中的Na+积累量表现为种皮胚胚乳,K+累积表现为胚种皮胚乳;幼苗中,Na+积累表现为根茎叶。随着Na Cl浓度的增加,3个玉米自交系萌动种子和幼苗中的Na+含量逐渐升高,但是萌动种子中耐盐自交系81162和8723的Na+增加幅度小于盐敏感自交系P138,Na+含量小于盐敏感自交系P138;幼苗中耐盐自交系81162和8723的Na+增加幅度大于盐敏感自交系P138,幼苗根中Na+含量大于盐敏感自交系P138;茎叶中的Na+含量小于盐敏感自交系P138。随着Na Cl浓度的增加,萌动种子和幼苗中的K+和Ca2+含量逐渐降低。K+离子在耐盐自交系81162和8723萌动种子和幼苗中的降低幅度小于盐敏感自交系P138;Ca2+离子在耐盐自交系81162和8723幼苗中的降低幅度小于盐敏感自交系P138;而在萌动种子中3个自交系Ca2+的流失差异不大。耐盐自交系81162和8723萌动种子和幼苗中K+含量都大于盐敏感自交系P138。耐盐自交系81162和8723的萌动种子和幼苗根中Ca2+含量都大于盐敏感自交系P138;幼苗叶片中则小于盐敏感自交系P138。萌动种子和幼苗中K+/Na+和Ca2+/Na+均随着Na Cl浓度的升高而降低,K+/Na+比值表现为耐盐自交系81162和8723大于盐敏感自交系P138。耐盐自交系81162和8723通过调节离子平衡维持萌动种子和幼苗中较高的K+/Na+比值从而提高耐盐性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号