首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously demonstrated that the human heterodimeric meiosis-specific MutS homologs, hMSH4-hMSH5, bind uniquely to a Holliday Junction and its developmental progenitor (Snowden, T., Acharya, S., Butz, C., Berardini, M., and Fishel, R. (2004) Mol. Cell 15, 437-451). ATP binding by hMSH4-hMSH5 resulted in the formation of a sliding clamp that dissociated from the Holliday Junction crossover region embracing two duplex DNA arms. The loading of multiple hMSH4-hMSH5 sliding clamps was anticipated to stabilize the interaction between parental chromosomes during meiosis double-stranded break repair. Here we have identified the interaction region between the individual subunits of hMSH4-hMSH5 that are likely involved in clamp formation and show that each subunit of the heterodimer binds ATP. We have determined that ADP-->ATP exchange is uniquely provoked by Holliday Junction recognition. Moreover, the hydrolysis of ATP by hMSH4-hMSH5 appears to occur after the complex transits the open ends of model Holliday Junction oligonucleotides. Finally, we have identified several components of the double-stranded break repair machinery that strongly interact with hMSH4-hMSH5. These results further underline the function(s) and interactors of hMSH4-hMSH5 that ensure accurate chromosomal repair and segregation during meiosis.  相似文献   

2.
The mechanics of hMSH2-hMSH6 ATP binding and hydrolysis are critical to several proposed mechanisms for mismatch repair (MMR), which in turn rely on the detailed coordination of ATP processing between the individual hMSH2 and hMSH6 subunits. Here we show that hMSH2-hMSH6 is strictly controlled by hMSH2 and magnesium in a complex with ADP (hMSH2(magnesium-ADP)-hMSH6). Destabilization of magnesium results in ADP release from hMSH2 that allows high affinity ATP binding by hMSH6, which then enhances ATP binding by hMSH2. Both subunits must be ATP-bound to efficiently form a stable hMSH2-hMSH6 hydrolysis-independent sliding clamp required for MMR. In the presence of magnesium, the ATP-bound sliding clamps remain on the DNA for ~8 min. These results suggest a precise stepwise kinetic mechanism for hMSH2-hMSH6 functions that appears to mimic G protein switches, severely constrains models for MMR, and may partially explain the MSH2 allele frequency in Lynch syndrome or hereditary nonpolyposis colorectal cancer.  相似文献   

3.
The human homologs of prokaryotic mismatch repair have been shown to mediate the toxicity of certain DNA damaging agents; cells deficient in the mismatch repair pathway exhibit resistance to the killing effects of several of these agents. Although previous studies have suggested that the human MutS homologs, hMSH2-hMSH6, bind to DNA containing a variety of DNA adducts, as well as mispaired nucleotides, a number of studies have suggested that DNA binding does not correlate with repair activity. In contrast, the ability to process adenosine nucleotides by MutS homologs appears to be fundamentally linked to repair activity. In this study, oligonucleotides containing a single well defined O(6)-methylguanine adduct were used to examine the extent of lesion-provoked DNA binding, single-step ADP --> ATP exchange, and steady-state ATPase activity by hMSH2-hMSH3 and hMSH2-hMSH6 heterodimers. Interestingly, O(6)-methylguanine lesions when paired with either a C or T were found to stimulate ADP --> ATP exchange, as well as the ATPase activity of purified hMSH2-hMSH6, whereas there was no significant stimulation of hMSH2-hMSH3. These results suggest that O(6)-methylguanine uniquely activates the molecular switch functions of hMSH2-hMSH6.  相似文献   

4.
hMSH2-hMSH6 forms a hydrolysis-independent sliding clamp on mismatched DNA   总被引:8,自引:0,他引:8  
Mismatch recognition by the human MutS homologs hMSH2-hMSH6 is regulated by adenosine nucleotide binding, supporting the hypothesis that it functions as a molecular switch. Here we show that ATP-induced release of hMSH2-hMSH6 from mismatched DNA is prevented if the ends are blocked or if the DNA is circular. We demonstrate that mismmatched DNA provokes ADP-->ATP exchange, resulting in a discernible conformational transition that converts hMSH2-hMSH6 into a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone. Our results support a model for bidirectional mismatch repair in which stochastic loading of multiple ATP-bound hMSH2-hMSH6 sliding clamps onto mismatch-containing DNA leads to activation of the repair machinery and/or other signaling effectors similar to G protein switches.  相似文献   

5.
The DNA lesion 8-oxo-guanine (8-oxo-G) is a highly mutagenic product of the interaction between reactive oxygen species and DNA. To maintain genomic integrity, cells have evolved mechanisms capable of removing this frequently arising oxidative lesion. Mismatch repair (MMR) appears to be one pathway associated with the repair of 8-oxo-G lesions (DeWeese, T. L., Shipman, J. M., Larrier, N. A., Buckley, N. M., Kidd, L. R., Groopman, J. D., Cutler, R. G., te Riele, H., and Nelson, W. G. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 11915-11920; Ni, T. T., Marsischky, G. T., and Kolodner, R. D. (1999) Mol. Cell 4, 439-444). Here we report the effect of double-stranded DNA oligonucleotides containing a single 8-oxo-G on the DNA binding affinity, ATPase, and ADP right arrow ATP exchange activities of hMSH2-hMSH6 and hMSH2-hMSH3. We found that hMSH2-hMSH6 binds the oligonucleotide DNA substrates with the following affinities: 8-oxo-G/T > 8-oxo-G/G > 8-oxo-G/A > 8-oxo-G/C approximately G/C. A similar trend was observed for DNA-stimulated ATPase and ADP --> ATP exchange activities of hMSH2-hMSH6. In contrast, hMSH2-hMSH3 did not appear to bind any of the 8-oxo-G containing DNA substrates nor was there enhanced ATPase or ADP --> ATP exchange activities. These results suggest that only hMSH2-hMSH6 is activated by recognition of 8-oxo-G lesions. Our data are consistent with the notion that post-replication MMR only participates in the repair of mismatched 8-oxo-G lesions.  相似文献   

6.
Bcl2 has been reported to suppress DNA mismatch repair (MMR) with promotion of mutagenesis, but the mechanism(s) is not fully understood. MutSalpha is the hMSH2-hMSH6 heterodimer that primarily functions to correct mutations that escape the proofreading activity of DNA polymerase. Here we have discovered that Bcl2 potently suppresses MMR in association with decreased MutSalpha activity and increased mutagenesis. Exposure of cells to nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone results in accumulation of Bcl2 in the nucleus, which interacts with hMSH6 but not hMSH2 via its BH4 domain. Deletion of the BH4 domain from Bcl2 abrogates the ability of Bcl2 to interact with hMSH6 and is associated with enhanced MMR efficiency and decreased mutation frequency. Overexpression of Bcl2 reduces formation of the hMSH2-hMSH6 complex in cells, and purified Bcl2 protein directly disrupts the hMSH2-hMSH6 complex and suppresses MMR in vitro. Importantly, depletion of endogenous Bcl2 by RNA interference enhances formation of the hMSH2-hMSH6 complex in association with increased MMR and decreased mutagenesis. Thus, Bcl2 suppression of MMR may occur in a novel mechanism by directly regulating the heterodimeric hMSH2-hMSH6 complex, which potentially contributes to genetic instability and carcinogenesis.  相似文献   

7.
MSH2-MSH3 directs the repair of insertion/deletion loops of up to 13 nucleotides in vivo and in vitro. To examine the biochemical basis of this repair specificity, we characterized the mispair binding and ATPase activity of hMSH2-hMSH3. The ATPase was found to be regulated by a mismatch-stimulated ADP --> ATP exchange, which induces a conformational transition by the protein complex. We demonstrated strong binding of hMSH2-hMSH3 to an insertion/deletion loop containing 24 nucleotides that is incapable of provoking ADP --> ATP exchange, suggesting that mismatch recognition appears to be necessary but not sufficient to induce the intrinsic ATPase. These studies support the idea that hMSH2-hMSH3 functions as an adenosine nucleotide-regulated molecular switch that must be activated by mismatched nucleotides for classical mismatch repair to occur.  相似文献   

8.
Hereditary nonpolyposis colorectal cancer is caused by germline mutations in DNA mismatch repair genes. The majority of cases are associated with mutations in hMSH2 or hMLH1; however, about 12% of cases are associated with alterations in hMSH6. The hMSH6 protein forms a heterodimer with hMSH2 that is capable of recognizing a DNA mismatch. The heterodimer then utilizes its adenosine nucleotide processing ability in an, as of yet, unclear mechanism to facilitate communication between the mismatch and a distant strand discrimination site. The majority of reported mutations in hMSH6 are deletions or truncations that entirely eliminate the function of the protein; however, nearly a third of the reported variations are missense mutations whose functional significance is unclear. We analyzed seven cancer-associated single amino acid alterations in hMSH6 distributed throughout the functional domains of the protein to determine their effect on the biochemical activity of the hMSH2-hMSH6 heterodimer. Five alterations affect mismatch-stimulated ATP hydrolysis activity providing functional evidence that missense variants of hMSH6 can disrupt mismatch repair function and may contribute to disease. Of the five mutants that affect mismatch-stimulated ATP hydrolysis, only two (R976H and H1248D) affect mismatch recognition. Thus, three of the mutants (G566R, V878A, and D803G) appear to uncouple the mismatch binding and ATP hydrolysis activities of the heterodimer. We also demonstrate that these three mutations alter ATP-dependent conformation changes of hMSH2-hMSH6, suggesting that cancer-associated mutations in hMSH6 can disrupt the intramolecular signaling that coordinates mismatch binding with adenosine nucleotide processing.  相似文献   

9.
Lee TH  Yi W  Griswold MD  Zhu F  Her C 《DNA Repair》2006,5(1):32-42
Increasing evidence suggests that components of the DNA mismatch repair (MMR) pathway play multifunctional roles beyond the scope of mismatch correction, including the modulation of cellular responses to DNA damage and homologous recombination. The heterocomplex consisting of MutS homologous proteins, hMSH4 and hMSH5, is believed to play essential roles in meiotic DNA repair particularly during the process of meiotic homologous recombination (HR). In order to gain a better understanding of the mechanistic basis underlying the roles of these two human MutS proteins, we have identified G-protein pathway suppressor 2 (GPS2) (i.e., an integral component of a deacetylase complex) as an interacting protein partner specifically for the hMSH4-hMSH5 heterocomplex. The interaction with GPS2 is entirely dependent on the physical association between hMSH4 and hMSH5, as disruption of the interaction between hMSH4 and hMSH5 completely abolishes GPS2 recruitment. Our analysis further indicates that the association with GPS2 is mediated through the interface of hMSH4-hMSH5 complex and the N-terminal region of GPS2. Moreover, these three proteins interact in human cells, and analysis of microarray data suggested a coordinated expression pattern of these genes during the onset of meiosis. Together, the results of our present study suggest that the GPS2-associated deacetylase complex might function in concert with hMSH4-hMSH5 during the process of homologous recombination.  相似文献   

10.
We have previously shown that hMSH2-hMSH6 contains an intrinsic ATPase which is activated by mismatch-provoked ADP-->ATP exchange that coordinately induces the formation of a sliding clamp capable of hydrolysis-independent diffusion along the DNA backbone (1,2). These studies suggested that mismatch repair could be propagated by a signaling event transduced via diffusion of ATP-bound hMSH2-hMSH6 molecular switches to the DNA repair machinery. The Molecular Switch model (Fishel, R. (1998) Genes Dev. 12, 2096-2101) is considerably different than the Hydrolysis-Driven Translocation model (Blackwell, L. J., Martik, D., Bjornson, K. P., Bjornson, E. S., and Modrich, P. (1998) J. Biol. Chem. 273, 32055-32062) and makes additional testable predictions beyond the demonstration of hydrolysis-independent diffusion (Gradia, S., Subramanian, D., Wilson, T., Acharya, S., Makhov, A., Griffith, J., and Fishel, R. (1999) Mol. Cell 3, 255-261): (i) individual mismatch-provoked ADP-->ATP exchange should be unique and rate-limiting, and (ii) the k(cat x DNA) for the DNA-stimulated ATPase activity should decrease with increasing chain length. Here we have examined hMSH2-hMSH6 affinity and ATPase stimulatory activity for several DNA substrates containing mispaired nucleotides as well as the chain length dependence of a defined mismatch under physiological conditions. We find that the results are most consistent with the predictions of the Molecular Switch model.  相似文献   

11.
Mutations in the human mismatch repair protein hMSH2 have been found to cosegregate with hereditary nonpolyposis colorectal cancer (HNPCC). Previous biochemical and physical studies have shown that hMSH2 forms specific mispair binding complexes with hMSH3 and hMSH6. We have further characterized these protein interactions by mapping the contact regions within the hMSH2-hMSH3 and the hMSH2-hMSH6 heterodimers. We demonstrate that there are at least two distinct interaction regions of hMSH2 with hMSH3 and hMSH2 with hMSH6. Interestingly, the interaction regions of hMSH2 with either hMSH3 or hMSH6 are identical and there is a coordinated linear orientation of these regions. We examined several missense alterations of hMSH2 found in HNPCC kindreds that are contained within the consensus interaction regions. None of these missense mutations displayed a defect in protein-protein interaction. These data support the notion that these HNPCC-associated mutations may affect some other function of the heterodimeric complexes than simply the static interaction of hMSH2 with hMSH3 or hMSH2 with hMSH6.  相似文献   

12.
The expression, replication and repair of eukaryotic genomes require the fundamental organizing unit of chromatin, the nucleosome, to be unwrapped and disassembled. We have developed a quantitative model of nucleosome dynamics which provides a fundamental understanding of these DNA processes. We calibrated this model using results from high precision single molecule nucleosome unzipping experiments, and then tested its predictions for experiments in which nucleosomes are disassembled by the DNA mismatch recognition complex hMSH2-hMSH6. We found that this calibrated model quantitatively describes hMSH2-hMSH6 induced disassembly rates of nucleosomes with two separate DNA sequences and four distinct histone modification states. In addition, this model provides mechanistic insight into nucleosome disassembly by hMSH2-hMSH6 and the influence of histone modifications on this disassembly reaction. This model''s precise agreement with current experiments suggests that it can be applied more generally to provide important mechanistic understanding of the numerous nucleosome alterations that occur during DNA processing.  相似文献   

13.
The tumor suppressor protein p53 modulates cellular response to DNA damage by a variety of mechanisms that may include direct recognition of some forms of primary DNA damage. Linear 49-base pair duplex DNAs were constructed containing all possible single-base mismatches as well as a 3-cytosine bulge. Filter binding and gel retardation assays revealed that the affinity of p53 for a number of these lesions was equal to or greater than that of the human mismatch repair complex, hMSH2-hMSH6, under the same binding conditions. However, other mismatches including G/T, which is bound strongly by hMSH2-hMSH6, were poorly recognized by p53. The general order of affinity of p53 was greatest for a 3-cytosine bulge followed by A/G and C/C mismatches, then C/T and G/T mismatches, and finally all the other mismatches.  相似文献   

14.
The ability of the tumor suppressor protein, p53, to recognize certain types of DNA lesions may represent one of the mechanisms by which this protein modulates cellular response to DNA damage. p53 DNA binding properties are regulated by several factors, such as post-translational modifications including phosphorylation and acetylation, regulation by its own C-terminal domain and interactions with other cellular proteins. Substrates resembling Holliday junctions and extra base bulges were used to study the effect of three nuclear proteins, HMG-1, HMG I(Y) and hMSH2–hMSH6, on the lesion binding properties of p53. Gel retardation assays revealed that the three proteins had varying effects on p53 binding to these substrates. HMG-1 did not influence p53 binding to Holliday junctions or 3-cytosine bulges. HMG I(Y) rapidly dissociated p53 complexes with Holliday junctions but not 3-cytosine bulges. Finally, the mismatch repair protein complex, hMSH2–hMSH6, enhanced p53 binding to both substrates by 3–4-fold. Together, these results demonstrate that p53 DNA binding activity is highly influenced by the presence of other proteins, some having a dominant effect while others have a negative effect.  相似文献   

15.
Kunz C  Schär P 《Current biology : CB》2004,14(22):R962-R964
Crossovers ensure proper chromosome segregation in meiosis. A heterodimer of MutS proteins, hMSH4-hMSH5, has recently been found to interact with recombination intermediates in a manner that suggests a mechanism for directing meiotic DNA double strand break repair towards a crossover pathway.  相似文献   

16.
Elevated Microsatellite Alterations at Selected Tetranucleotide repeats (EMAST) is a genetic signature found in up to 60% of colorectal cancers (CRCs) that is caused by somatic dysfunction of the DNA mismatch repair (MMR) protein hMSH3. We have previously shown in vitro that recognition of 5-fluorouracil (5-FU) within DNA and subsequent cytotoxicity was most effective when both hMutSα (hMSH2-hMSH6 heterodimer) and hMutSβ (hMSH2-hMSH3 heterodimer) MMR complexes were present, compared to hMutSα > hMutSβ alone. We tested if patients with EMAST CRCs (hMutSβ defective) had diminished response to adjuvant 5-FU chemotherapy, paralleling in vitro findings.We analyzed 230 patients with stage II/III sporadic colorectal cancers for which we had 5-FU treatment and survival data. Archival DNA was analyzed for EMAST (>2 of 5 markers mutated among UT5037, D8S321, D9S242, D20S82, D20S85 tetranucleotide loci). Kaplan-Meier survival curves were generated and multivariate analysis was used to determine contribution to risk.We identified 102 (44%) EMAST cancers. Ninety-four patients (41%) received adjuvant 5-FU chemotherapy, and median follow-up for all patients was 51 months. Patients with EMAST CRCs demonstrated improved survival with adjuvant 5FU to the same extent as patients with non-EMAST CRCs (P<0.05). We observed no difference in survival between patients with stage II/III EMAST and non-EMAST cancers (P = 0.36).There is improved survival for stage II/III CRC patients after adjuvant 5-FU-based chemotherapy regardless of EMAST status. The loss of contribution of hMSH3 for 5-FU cytotoxicity may not adversely affect patient outcome, contrasting patients whose tumors completely lack DNA MMR function (MSI-H).  相似文献   

17.
The hMutS alpha (hMSH2-hMSH6) protein heterodimer plays a critical role in the detection of DNA mispairs in the mismatch repair (MMR) process. We recently reported that hMutS alpha proteins were degraded by the ubiquitin-proteasome pathway in a cell-type-dependent manner, indicating that one or several regulator(s) may interfere with hMutS alpha protein ubiquitination and degradation. On the other hand, we and others have shown that protein kinase C (PKC) is involved as a positive regulator of MMR activity. Here, we provide evidence that the atypical PKC zeta regulates ubiquitination, degradation, and levels of hMutS alpha proteins. Using both PKC zeta-transfected U937 and PKC zeta siRNA-transfected MRC-5 cell lines, we found that PKC zeta protein expression was correlated with that of hMutS alpha as well as with MMR activity, but was inversely correlated with hMutS alpha protein ubiquitination and degradation. Interestingly, PKC zeta interacts with hMSH2 and hMSH6 proteins and phosphorylates both. Moreover, in an in vitro assay PKCzeta mediates phosphorylation events decreasing hMutS alpha protein degradation via the ubiquitin-proteasome pathway. Altogether, our results indicate that PKC zeta modulates hMutS alpha stability and protein levels, and suggest a role for PKC zeta in genome stability by regulating MMR activity.  相似文献   

18.
Deficiencies in DNA mismatch repair (MMR) have been found in hereditary colon cancers (hereditary non-polyposis colon cancer, HNPCC) as well as in sporadic cancers, illustrating the importance of MMR in maintaining genomic integrity. We have examined the interactions of specific mismatch repair proteins in human nuclear extracts. Western blot and co-immunoprecipitation studies indicate two complexes as follows: one consisting of hMSH2, hMSH6, hMLH1, and hPMS2 and the other consisting of hMSH2, hMSH6, hMLH1, and hPMS1. These interactions occur without the addition of ATP. Furthermore, the protein complexes specifically bind to mismatched DNA and not to a similar homoduplex oligonucleotide. The protein complex-DNA interactions occur primarily through hMSH6, although hMSH2 can also become cross-linked to the mismatched substrate when not participating in the MMR protein complex. In the presence of ATP the binding of hMSH6 to mismatched DNA is decreased. In addition, hMLH1, hPMS2, and hPMS1 no longer interact with each other or with the hMutSalpha complex (hMSH2 and hMSH6). However, the ability of hMLH1 to co-immunoprecipitate mismatched DNA increases in the presence of ATP. This interaction is dependent on the presence of the mismatch and does not appear to involve a direct binding of hMLH1 to the DNA.  相似文献   

19.
20.
Mismatch repair is a highly conserved system that ensures replication fidelity by repairing mispairs after DNA synthesis. In humans, the two protein heterodimers hMutSα (hMSH2-hMSH6) and hMutLα (hMLH1-hPMS2) constitute the centre of the repair reaction. After recognising a DNA replication error, hMutSα recruits hMutLα, which then is thought to transduce the repair signal to the excision machinery. We have expressed an ATPase mutant of hMutLα as well as its individual subunits hMLH1 and hPMS2 and fragments of hMLH1, followed by examination of their interaction properties with hMutSα using a novel interaction assay. We show that, although the interaction requires ATP, hMutLα does not need to hydrolyse this nucleotide to join hMutSα on DNA, suggesting that ATP hydrolysis by hMutLα happens downstream of complex formation. The analysis of the individual subunits of hMutLα demonstrated that the hMutSα–hMutLα interaction is predominantly conferred by hMLH1. Further experiments revealed that only the N-terminus of hMLH1 confers this interaction. In contrast, only the C-terminus stabilised and co-immunoprecipitated hPMS2 when both proteins were co-expressed in 293T cells, indicating that dimerisation and stabilisation are mediated by the C-terminal part of hMLH1. We also examined another human homologue of bacterial MutL, hMutLβ (hMLH1–hPMS1). We show that hMutLβ interacts as efficiently with hMutSα as hMutLα, and that it predominantly binds to hMutSα via hMLH1 as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号