首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebral hypoxia results in generation of nitric oxide (NO) free radicals by Ca++-dependent activation of neuronal nitric oxide synthase (nNOS). The present study tests the hypothesis that the hypoxia-induced increased expression of nNOS in cortical neurons is mediated by NO. To test this hypothesis the cellular distribution of nNOS was determined immunohistochemically in the cerebral cortex of hypoxic newborn piglets with and without prior exposure to the selective nNOS inhibitor 7-nitroindazole sodium (7-NINA). Studies were conducted in newborn piglets, divided into normoxic (n = 6), normoxic treated with 7-NINA (n = 6), hypoxic (n = 6) and hypoxic pretreated with 7-NINA (n = 6). Hypoxia was induced by lowering the FiO2 to 0.05–0.07 for 1 h. Cerebral tissue hypoxia was documented by decrease of ATP and phosphocreatine levels in both the hypoxic and 7-NINA pretreated hypoxic groups (P < 0.01). An increase in the number of nNOS immunoreactive neurons was observed in the frontal and parietal cortex of the hypoxic as compared to the normoxic groups (P < 0.05) which was attenuated by pretreatment with 7-NINA (P < 0.05 versus hypoxic). 7-NINA affected neither the cerebral energy metabolism nor the cellular distribution of nNOS in the cerebral cortex of normoxic animals. We conclude that nNOS expression in cortical neurons of hypoxic newborn piglets is NO-mediated. We speculate that nNOS inhibition by 7-NINA will protect against hypoxia-induced NO-mediated neuronal death.  相似文献   

2.
This study tested the hypothesis that cerebral hypoxia results in nitric oxide (NO)-mediated modification of the glycine-binding site of the N-methyl-D-aspartate (NMDA) receptor. Glycine binding characteristics were determined in normoxic, hypoxic, and hypoxic with 7-nitroindazole (7-NINA)-pretreated newborn piglets. The role of nitration was evaluated by determining binding characteristics in non-nitrated and in-vitro nitrated membranes. Bmax and Kd values were 30% higher in the hypoxic group than the normoxic and 7-NINA pretreated hypoxic groups. Kd values in the in-vitro normoxic nitrated membranes were similar to the non-nitrated hypoxic group. Bmax values in the in-vitro) normoxic nitrated membrane samples were 16% lower than in the non-nitrated hypoxic group. We conclude cerebral hypoxia causes modification of the glycine-binding site of the NMDA receptor and this modification of the glycine-binding site may be NO mediated. We propose that NO-mediated modification of the glycine-binding site of the NMDA receptor regulates calcium influx through its ion-channel.  相似文献   

3.
We have previously shown that hypoxia results in increased activity of caspase-9, caspase-3 and fragmentation of nuclear DNA in the cerebral cortex of newborn piglets. The present study tested the hypothesis that mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets is mediated by caspase-9-dependent caspase-3 activation. Newborn piglets were randomly assigned to normoxic, hypoxic, and hypoxic pretreated with a highly selective caspase-9 inhibitor, Z-LEHD-FMK groups. The data showed that cerebral tissue hypoxia results in increased expression of caspase-activated DNase (CAD) protein in the nucleus and fragmentation of nuclear DNA. A pretreatment with Z-LEHD-FMK attenuated the expression of CAD protein in the nucleus and the fragmentation of nuclear DNA. Based on these results, we conclude that the mechanism by which the nuclear DNA was fragmented is mediated by caspase-9-dependent caspase-3 activation and the consequence of caspase-activated DNase activation in the cerebral cortex of newborn piglets.  相似文献   

4.
Previous studies have shown that brain tissue hypoxia results in increased N-methyl-D-aspartate (NMDA) receptor activation and receptor-mediated increase in intracellular calcium which may activate Ca++-dependent nitric oxide synthase (NOS). The present study tested the hypothesis that tissue hypoxia will induce generation of nitric oxide (NO) free radicals in cerebral cortex of newborn guinea pigs. Nitric oxide free radical generation was assayed by electron spin resonance (ESR) spectroscopy. Ten newborn guinea pigs were assigned to either normoxic (FiO2 = 21%, n = 5) or hypoxic (FiO2 = 7%, n = 5) groups. Prior to exposure, animals were injected subcutaneously with the spin trapping agents diethyldithiocarbamate (DETC, 400 mg/kg), FeSO4.7H2O (40 mg/kg) and sodium citrate (200mg/kg). Pretreated animals were exposed to either 21% or 7% oxygen for 60 min. Cortical tissue was obtained, homogenized and the spin adducts extracted. The difference of spectra between 2.047 and 2.027 gauss represents production of NO free radical. In hypoxic animals, there was a difference (16.75 ± 1.70 mm/g dry brain tissue) between the spectra of NO spin adducts identifying a significant increase in NO free radical production. In the normoxic animals, however, there was no difference between the two spectra. We conclude that hypoxia results in Ca2+- dependent NOS mediated increase in NO free radical production in the cerebral cortex of newborn guinea pigs. Since NO free radicals produce peroxynitrite in presence of superoxide radicals that are abundant in the hypoxic tissue, we speculate that hypoxia-induced generation of NO free radical will lead to nitration of a number of cerebral proteins including the NMDA receptor, a potential mechanism of hypoxia-induced modification of the NMDA receptor resulting in neuronal injury.  相似文献   

5.
6.
1. The aim of the present work was to determine hypoxia-induced modifications in the cascade of intracellular events coupled to muscarinic acetylcholine receptor (mAChR) activation in brain. For this purpose, enzymatic activities were measured on normoxically incubated frontal cortical slices from mice exposed to hypobaric hypoxia for 72 hr.2. We found that hypoxia induced alterations in several cerebral enzymatic basal activities: it increased nitric oxide synthase (NOS), but it decreased both membrane protein kinase C (PKC) and phospholipase C activities.3. The mAChR agonist carbachol was found to increase phosphoinositide hydrolysis to greater values in hypoxic tissues than those found in normoxic conditions. Furthermore, a greater translocation of PKC in response to carbachol was observed in hypoxic tissues than in normoxic ones.4. Besides, carbachol induced a drastic reduction of NOS activity in hypoxic brains, at concentrations that stimulated this enzyme activity in normoxic preparations. In the latter, inhibition is obtained only with high concentrations of the cholinergic muscarinicagonist.5. These results pointed to a carbachol-mediated mAChR hyperactivity induced by hypoxic insult.6. The possibility that these effects would account for a compensatory mechanism to diminish NOS hyperactivity, probably protecting for NO neurotoxic action in hypoxic brain, is also discussed.  相似文献   

7.
Altered nitric oxide (NO) production could contribute to the pathogenesis of hypoxia-induced pulmonary hypertension. To determine whether parameters of lung NO are altered at an early stage of hypoxia-induced pulmonary hypertension, newborn piglets were exposed to room air (control, n = 21) or 10% O(2) (hypoxia, n = 19) for 3-4 days. Some lungs were isolated and perfused for measurement of exhaled NO output and the perfusate accumulation of nitrite and nitrate (NOx-), the stable metabolites of NO. Pulmonary arteries (20-600-microm diameter) and their accompanying airways were dissected from other lungs and incubated for NOx- determination. Abundances of the nitric oxide synthase (NOS) isoforms endothelial NOS and neural NOS were assessed in homogenates of PAs and airways. The perfusate NOx- accumulation was similar, whereas exhaled NO output was lower for isolated lungs of hypoxic, compared with control, piglets. The incubation solution NOx- did not differ between pulmonary arteries (PAs) of the two groups but was lower for airways of hypoxic, compared with control, piglets. Abundances of both eNOS and nNOS proteins were similar for PA homogenates from the two groups of piglets but were increased in airway homogenates of hypoxic compared with controls. The NO pathway is altered in airways, but not in PAs, at an early stage of hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   

8.
We hypothesized that neonatal seizures lead to increased Ca2+ influx (nCa2+I) in neuronal nuclei of newborn rats and that such increase is nitric-oxide mediated. Neuronal nuclear 45Ca2+ influx (nCa2+I) was measured in neuronal nuclei of 25 10-day-old male rat-pups newborn brains. They were divided into five groups (n = 5/group). (I) control; (II) hypoxia without seizures; (III) hypoxia with seizures; (IV) kainate, 2 mg/kg intraperitoneal (i.p.)-induced seizures and (V) 7-nitroindazole (7-NINA), 1 mg/kg i.p. pretreated, kainate-induced seizures. nCa2+I was significantly (P < 0.05) increased following hypoxia or seizures (hypoxic- or kainate-induced). Post-hypoxic seizures further enhanced nCa2+I increase induced by hypoxia (P < 0.05). 7-NINA abated the nCa2+I increase induced by kainate. We conclude that (1) kainate or hypoxia-induced seizures in newborn rats modify the neuronal nuclear membrane function, resulting in increased nCa2+I, (2) seizures exacerbate the hypoxia-induced increased nCa2+I incurred after hypoxia and (3) intranuclear calcium surges during kainate-induced neonatal seizures are nitric oxide-mediated.  相似文献   

9.
Myoglobin-deficient mice are viable and have preserved cardiac function due to their ability to mount a complex compensatory response involving increased vascularization and the induction of the hypoxia gene program (hypoxia-inducible factor-1alpha, endothelial PAS, heat shock protein27, etc.). To further define and explore functional roles for myoglobin, we challenged age- and gender-matched wild-type and myoglobin-null mice to chronic hypoxia (10% oxygen for 1 day to 3 wk). We observed a 30% reduction in cardiac systolic function in the myoglobin mutant mice exposed to chronic hypoxia with no changes observed in the wild-type control hearts. The cardiac dysfunction observed in the hypoxic myoglobin-null mice was reversible with reexposure to normoxic conditions and could be prevented with treatment of an inhibitor of nitric oxide (NO) synthases. These results support the conclusion that hypoxia-induced cardiac dysfunction in myoglobin-null mice occurs via a NO-mediated mechanism. Utilizing enzymatic assays for NO synthases and immunohistochemical analyses, we observed a marked induction of inducible NO synthase in the hypoxic myoglobin mutant ventricle compared with the wild-type hypoxic control ventricle. These new data establish that myoglobin is an important cytoplasmic cardiac hemoprotein that functions in regulating NO homeostasis within cardiomyocytes.  相似文献   

10.
Nitric oxide (NO) attenuates hypoxia-induced endothelin (ET)-1 expression in cultured umbilical vein endothelial cells. We hypothesized that NO similarly attenuates hypoxia-induced increases in ET-1 expression in the lungs of intact animals and reasoned that potentially reduced ET-1 levels may contribute to the protective effects of NO against the development of pulmonary hypertension during chronic hypoxia. As expected, hypoxic exposure (24 h, 10% O(2)) increased rat lung ET-1 peptide and prepro-ET-1 mRNA levels. Contrary to our hypothesis, inhaled NO (iNO) did not attenuate hypoxia-induced increases in pulmonary ET-1 peptide or prepro-ET-1 mRNA levels. Because of this surprising finding, we also examined the effects of NO on hypoxia-induced increases in ET peptide levels in cultured cell experiments. Consistent with the results of iNO experiments, administration of the NO donor S-nitroso-N-acetyl-penicillamine to cultured bovine pulmonary endothelial cells did not attenuate increases in ET peptide levels resulting from hypoxic (24 h, 3% O(2)) exposure. In additional experiments, we examined the effects of NO on the activity of a cloned ET-1 promoter fragment containing a functional hypoxia inducible factor-1 binding site in reporter gene experiments. Whereas moderate hypoxia (24 h, 3% O(2)) had no effect on ET-1 promoter activity, activity was increased by severe hypoxic (24 h, 0.5% O(2)) exposure. ET-1 promoter activity after S-nitroso-N-acetyl-penicillamine administration during severe hypoxia was greater than that in normoxic controls, although activity was reduced compared with that in hypoxic controls. These findings suggest that hypoxia-induced pulmonary ET-1 expression is unaffected by NO.  相似文献   

11.
Nitric oxide (NO) can induce apoptosis in a variety of cell types. A non-toxic concentration of nitric oxide under normal oxygen conditions triggered cell death under hypoxic conditions (1.5% O(2)) in fibroblasts. Nitric oxide administered during hypoxia induced the release of cytochrome c, caspase-9 activation, and the loss of mitochondrial membrane potential followed by DNA fragmentation and lactate dehydrogenase release (markers of cell death). Bcl-X(L) protected cells from nitric oxide-induced apoptosis during hypoxia by preventing the release of cytochrome c, caspase-9 activation, and by maintaining a mitochondrial membrane potential. Murine embryonic fibroblasts from bax(-/-) bak(-/-) mice exposed to nitric oxide during hypoxia did not die, indicating that pro-apoptotic Bcl-2 family members are required for NO-induced apoptosis during hypoxia. The nitric oxide-induced cell death during hypoxia was independent of cGMP and peroxynitrite. Cells devoid of mitochondrial DNA (rho secondary-cells) lack a functional electron transport chain and were resistant to nitric oxide-induced cell death during hypoxia, suggesting that a functional electron transport chain is required for nitric oxide-induced apoptosis during hypoxia.  相似文献   

12.
We performed studies to determine whether chronic hypoxia impairs nitric oxide (NO) signaling in resistance level pulmonary arteries (PAs) of newborn piglets. Piglets were maintained in room air (control) or hypoxia (11% O(2)) for either 3 (shorter exposure) or 10 (longer exposure) days. Responses of PAs to a nonselective NO synthase (NOS) antagonist, N(omega)-nitro-L-arginine methylester (L-NAME), a NOS-2-selective antagonist, aminoguanidine, and 7-nitroindazole, a NOS-1-selective antagonist, were measured. Levels of NOS isoforms and of two proteins involved in NOS signaling, heat shock protein (HSP) 90 and caveolin-1, were assessed in PA homogenates. PAs from all groups constricted to L-NAME but not to aminoguanidine or 7-nitroindazole. The magnitude of constriction to L-NAME was similar for PAs from control and hypoxic piglets of the shorter exposure period but was diminished for PAs from hypoxic compared with control piglets of the longer exposure period. NOS-3, HSP90, and caveolin-1 levels were similar in hypoxic and control PAs. These findings indicate that NOS-3, but not-NOS 2 or NOS-1, is involved with basal NO production in PAs from both control and hypoxic piglets. After 10 days of hypoxia, NO function is impaired in PAs despite preserved levels of NOS-3, HSP90, and caveolin-1. The development of NOS-3 dysfunction in resistance level PAs may contribute to the progression of chronic hypoxia-induced pulmonary hypertension in newborn piglets.  相似文献   

13.
In the pulmonary vasculature, the mechanisms responsible for oxygen sensing and the initiation of hypoxia-induced vasoconstriction and vascular remodeling are still unclear. Nitric oxide (NO) and reactive oxygen species (ROS) are discussed as early mediators of the hypoxic response. Here, we describe a quantitative analysis of NO- and ROS-producing cells within the vascular walls of murine lung sections cultured at normoxia or hypoxia. Whereas the number of NO-producing cells was not changed by hypoxia, the number of ROS-generating cells was significantly increased. Addition of specific inhibitors revealed that mitochondria were the source of ROS. The participation of the individual mitochondrial complexes differed in normoxic and hypoxic ROS generation. Whereas normoxic ROS production required complexes I and III, hypoxic ROS generation additionally demanded complex II. Histochemically demonstrable succinate dehydrogenase activity of complex II in the arterial wall decreased during hypoxia. Inhibition of the reversed enzymatic reaction, i.e., fumarate reductase, by application of succinate, specifically abolished hypoxic, but not normoxic, ROS generation. Thus complex II plays an essential role in hypoxic ROS production. Presumably, its catalytic activity switches from succinate dehydrogenase to fumarate reductase at reduced oxygen tension, thereby modulating the directionality of the electron flow.  相似文献   

14.

Rationale

There is evidence that impairments in nitric oxide (NO) signaling contribute to chronic hypoxia-induced pulmonary hypertension. The L-arginine-NO precursor, L-citrulline, has been shown to ameliorate pulmonary hypertension. Sodium-coupled neutral amino acid transporters (SNATs) are involved in the transport of L-citrulline into pulmonary arterial endothelial cells (PAECs). The functional link between the SNATs, L-citrulline, and NO signaling has not yet been explored.

Objective

We tested the hypothesis that changes in SNAT1 expression and transport function regulate NO production by modulating eNOS coupling in newborn piglet PAECs.

Methods and Results

A silencing RNA (siRNA) technique was used to assess the contribution of SNAT1 to NO production and eNOS coupling (eNOS dimer-to-monomer ratios) in PAECs from newborn piglets cultured under normoxic and hypoxic conditions in the presence and absence of L-citrulline. SNAT1 siRNA reduced basal NO production in normoxic PAECs and prevented L-citrulline-induced elevations in NO production in both normoxic and hypoxic PAECs. SNAT1 siRNA reduced basal eNOS dimer-to-monomer ratios in normoxic PAECs and prevented L-citrulline-induced increases in eNOS dimer-to-monomer ratios in hypoxic PAECs.

Conclusions

SNAT1 mediated L-citrulline transport modulates eNOS coupling and thus regulates NO production in hypoxic PAECs from newborn piglets. Strategies that increase SNAT1-mediated transport and supply of L-citrulline may serve as novel therapeutic approaches to enhance NO production in patients with pulmonary vascular disease.  相似文献   

15.
It has been proposed that the hemodynamic deterioration associated with heart failure (HF) may be due in part to ongoing loss of viable cardiac myocytes through apoptosis. Hypoxia has been shown to promote apoptosis in normal cardiomyocytes. Adaptation and maladaptations inherent to heart failure can modify the susceptibility of cells to different stress factors. We hypothesized that HF modifies the threshold of cardiomyocytes to hypoxia-induced apoptosis. Cardiomyocytes were isolated from 18 human hearts explanted at the time of cardiac transplantation due to either ischemic cardiomyopathy (ICM) (n = 9) or idiopathic dilated cardiomyopathy (IDC) (n = 9). Tissue from five normal donor hearts (NL) for whom no suitable recipient was available was used as control. Cardiomyocytes were incubated for 3 h under normoxic (95% air-5% CO(2)) or hypoxic (95% N(2)-5% CO(2)) conditions. Expression of caspase-3 and DNA fragmentation factor-45 (DFF45)/inhibitor of caspase-3-activated DNase (ICAD) was detected by Western blot analysis. Three hours of hypoxia did not affect the expression of these proteins in NL cardiomyocytes. In contrast, hypoxia led to cleavage of caspase-3 and DFF45/ICAD both in ICM and IDC. In conclusion, failing cardiomyocytes exhibit increased susceptibility to hypoxia-induced apoptosis.  相似文献   

16.
Caspases play an important role in programmed cell death. Caspase-3 is a key executioner of apoptosis, whose activation is mediated by the initiator caspases, caspase-8 and caspase-9. The present study tested the hypothesis that cerebral hypoxia results in increased activation and expression of caspases-3, -8, and -9 in the cytosolic fraction of the cerebral cortex of newborn piglets. To test this hypothesis the activity and expression of caspases-3, -8, and -9 were determined in newborn piglets divided into normoxic and hypoxic groups. Caspase activity was determined spectrofluorometrically using enzyme specific substrates. The expression of caspase protein was assessed by Western blot analysis using enzyme specific antibody. Caspases-3, -8, and -9 activity and expression was significantly higher in the hypoxic group than in the normoxic group. These results demonstrate that hypoxia induces activation and increased expression of both the initiator caspases and the executioner caspase in the cerebral cortex of newborn piglets. We conclude that hypoxia results in stimulation of both the pathways of caspase-3 activation.  相似文献   

17.
Female rats develop less severe pulmonary hypertension (PH) in response to chronic hypoxia compared with males, thus implicating a potential role for ovarian hormones in mediating this gender difference. Considering that estrogen upregulates endothelial nitric oxide (NO) synthase (eNOS) in systemic vascular tissue, we hypothesized that estrogen inhibits hypoxic PH by increasing eNOS expression and activity. To test this hypothesis, we examined responses to the endothelium-derived NO-dependent dilator ionomycin and the NO donors S-nitroso-N-acetylpenicillamine and spermine NONOate in U-46619-constricted, isolated, saline-perfused lungs from the following groups: 1) normoxic rats with intact ovaries, 2) chronic hypoxic (CH) rats with intact ovaries, 3) CH ovariectomized rats given 17 beta-estradiol (E(2)beta), and 4) CH ovariectomized rats given vehicle. Additional experiments assessed pulmonary eNOS levels in each group by Western blotting. Our findings indicate that E(2)beta attenuated chronic hypoxia-induced right ventricular hypertrophy, pulmonary arterial remodeling, and polycythemia. Furthermore, although CH augmented vasodilatory responsiveness to ionomycin and increased pulmonary eNOS expression, these responses were not potentiated by E(2)beta. Finally, responses to S-nitroso-N-acetylpenicillamine and spermine NONOate were similarly attenuated in all CH groups compared with normoxic control groups. We conclude that the inhibitory influence of E(2)beta on chronic hypoxia-induced PH is not associated with increased eNOS expression or activity.  相似文献   

18.
19.
The roles of endothelial nitric oxide synthase (eNOS), and its putative association with protein kinase B (PKB), and inducible nitric oxide synthase (iNOS) are not well characterized in hypoxic cardiac cells and there is a lack of studies that measure nitric oxide (NO) directly. Objective To measure NO production in cardiomyocytes and cardiac microvascular endothelial cells (CMECs) under baseline and hypoxic conditions and to evaluate the expression, regulation and activation of eNOS, iNOS and PKB. The effect of PI3-K/PKB inhibition on NO production and eNOS expression/activation was also investigated. Methods Adult rat cardiomyocytes and rat CMECs were made hypoxic by cell pelleting and low PO2 incubation. Intracellular NO was measured by FACS analysis of DAF-2/DA fluorescence, and eNOS, iNOS and PKB were evaluated by Western blotting or flow cytometry. Upstream PKB inhibition was achieved with wortmannin. Results (1) NO levels increased in both cell types after exposure to hypoxia. (2) In hypoxic CMECs, eNOS was upregulated and activated, no iNOS expression was observed and PKB was activated. (3) In myocytes, hypoxia did not affect eNOS expression, but increased its activation. Activated PKB also increased during hypoxia. FACS analysis showed increased iNOS in hypoxic myocytes. (4) Wortmannin resulted in decreased hypoxia-induced NO production and reduced activated eNOS levels. Conclusions Cardiomyocytes and CMECs show increased NO production during hypoxia. eNOS seems to be the main NOS isoform involved as source of the increased NO generation, although there may be a role for iNOS and other non-eNOS sources of NO in the hypoxic myocytes. Hypoxia-induced PKB and eNOS activation occurred simultaneously in both cell types, and the PI3-K/PKB pathway was associated with hypoxia-induced NO production via eNOS activation.  相似文献   

20.
Exposure to hypoxia triggers a variety of adverse effects in the brain that arise from metabolic stress and induce neuron apoptosis. Overexpression of the hypoxia-inducible factor-1alpha (HIF-1alpha) is believed to be a major candidate in orchestrating the cell's defense against stress. To test the impact of HIF-1alpha on apoptosis during chronic hypoxia in vivo, we examined the protective effect of modulating the nitric oxide (NO)/cGMP pathway by sildenafil, a selective inhibitor of phosphodiesterase-5 (PDE-5). Male ICR/CD-1 mice were divided into 3 groups (n = 6/group): normoxic (21% O(2)), hypoxic (9.5% O(2)), and hypoxic with sildenafil (1.4-mg/kg intraperitoneal injections daily). At the end of the 8-day treatment period, the mice were euthanized and cerebral cortex biopsies were harvested for analyses. We found that sildenafil: (1) did not significantly alter the hypoxia-induced weight loss and hemoglobin increase, but did augment plasma nitrates+nitrites and the tissue content of cGMP and phosphorylated (P) NO synthase III; (2) reversed the hypoxia-induced neuron apoptosis (terminal deoxynucleotidyl transferase positivity and double-staining immunofluorescence, P = 0.009), presumably through increased bcl-2/Bax (P = 0.0005); and (3) did not affect HIF-1alpha, but rather blunted the hypoxia-induced increase in P-ERK1/2 (P = 0.0002) and P-p38 (P = 0.004). We conclude that upregulating the NO/cGMP pathway by PDE-5 inhibition during hypoxia reduces neuron apoptosis, regardless of HIF-1alpha, through an interaction involving ERK1/2 and p38.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号