首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several compounds containing a thiomethyl group were found to replace vitamin B12 in a protozoan, Ochromonas malhamensis. The order of the effectiveness was as follows: 5-methylthioadenosine > S-adenosylmethionine > 5-methylthioribose > L-methionine. A similar order was obtained with respect to the permeability of these compounds into the protozoan cells, except for S-adenosylmethionine. 5-Methylthioadenosine and 5-methylthioribose as well as l-methionine markedly increased the intracellular content of l-methionine. The level of S-adenosylmethionine was also increased by them, but to a lesser degree. The thiomethyl group of the compounds was established to be incorporated into S-adenosylmethionine. The metabolic fate of the thiomethyl group of 5-methylthioadenosine cannot be distinguished from that of l-methionine. A high activity of 5-methylthioadenosine nucleosidase was detected in the cell-free extracts of the protozoan. These results strongly suggest that 5-methylthioadenosine would be metabolized to l-methionine via 5-methylthioribose and then the l-methionine would be converted to S-adenosylmethionine. Like l-methionine and vitamin B12, 5-methylthioadenosine and 5-methylthioribose may play an important role in maintenance of the C-1 pool in Ochromonas malhamensis.Neither 5-methylthioadenosine nor 5-methylthioribose replaced vitamin B12 in some vitamin B12-requiring bacteria. This result is consistent with the fact that neither compounds was significantly taken up by these bacteria.Abbreviations MTA 5-methylthioadenosine - AdoMet S-adenosylmethionine - MTR 5-methylthioribose - TCA trichloroacetic acid Paper II in the series. The first paper of the series has been published (Sugimoto and Fukui, 1974)  相似文献   

2.
YAC-1 cells were propagated in bioreactors in 11 and 7.51 volumes. The cells were metabolically labelled withd-[1-14C]galactose andd-[1-14C]glucosamine. The ganglioside fraction, purified by DEAE-Sepharose and silica gel column chromatography, showed on thin layer chromatography four major bands with mobilities between GM1 and GD1a. Gangliosides, obtained by further purification steps including high performance liquid chromatography on silica gel 60 columns with a gradient system of isopropanol:hexane:water, and preparative high performance TLC were characterized by (1) immunostaining of corresponding asialogangliosides obtained by mild acid hydrolysis and neuraminidase treatment and (2) fast atom bombardment mass spectrometry of native and permethylated samples and methylation analysis of GM1b ganglioside. As well as small amounts of GM2 and GM1, the major gangliosides found in the complex mixture were GM1b and GalNAc-GM1b. The structural heterogeneity of these gangliosides was cased by (a) substitution of the ceramide moiety by fatty acids of different chain length and degree of unsaturation (C16:0, C24:0, C24:1) and (b) N-substitution of the sialic acid moieties with either acetyl or glycolyl groups. Disialogangliosides were detected only in low amounts and will be the subject of further investigation. A polyclonal chicken antiserum was raised against IVNeuAc-GgOse5Cer. The antiserum was highly specific for gangliosides (IVNeuAc and IVNeuGc) and asialogangliosides with a GgOse5Cer backbone. No cross-reaction with GM1b or GgOse4Cer was observed. Abbreviations: FAB-MS, fast atom bombardment mass spectrometry; GSL(s), glycosphingolipid(s); HPLC, high performance liquid chromatography, HPTLC, high performance thin layer chromatography; NK, natural killer; SIM, selective ion monitoring; TIC, total ion current. NeuAc,N-acetylneuraminic acid; NeuGc,N-glycolylneuraminic acid. The designation of the following glycosphingolipids follows the IUB-IUPAC recommendations. GgOse3Cer or gangliotriaosylceramide or asialo GM2, GalNAc1-4Gal1-4GlcCer; GgOse4Cer or gangliotetraosylceramide or asialo GM1, Gal1-3GalNAc1-4Gal1-4GlcCer; GgOse5Cer organgliopentaosylceramide, GalNAc1-4Gal1-3GalNAc1-4Gal1-4GlcCer; II3NeuAc-GgOse4Cer or GM1; IV3NeuAcGgOse4Cer or GM1b; IV3NeuAc-GgOse5Cer or GalNAc-GM1b; IV3NeuAc, II3NeuAc-GgOse4Cer or GD1a; II3(NeuAc)2-GgOse4Cer or GD1b; IV3(NeuAc)2-GgOse4Cer or GD1c; IV3NeuAc,III6NeuAc-GgOse4Cer or GD1a; IV3NeuAc,II3(NeuAc)2-GgOse4Cer or GT1b;Vibrio cholerae and Arthrobacter ureafaciens neuraminidase (EC 3.2.1.18).  相似文献   

3.
Summary Heavy sarcoplasmic reticulum vesicles derived from the terminal cisternae of the sarcoplasmic reticulum have been shown to contain endogenous protein kinase activity and associated substrate proteins. Heavy vesicles were phosphorylated at room temperature in 5mm MgCl2, 1mm EGTA, 10mm HEPES (pH 7.4) and 10 m -32P-ATP.32P-phosphoproteins were determined by sodium dodecyl sulphate gel electrophoresis and autoradiography. In the absence of ethylene glycol bis (-aminoethyl ether) N,N,N,N-tetraacetic acid (EGTA), there was little phosphorylation due to the high level of ATPase activity. Phosphorylation of three proteins of 64,000 daltons (E1), 42,000 daltons (E2), and 20,000 daltons (E3) was observed in the presence of 1mm EGTA. Phosphorylation of these proteins wascAMP-independent, hydroxylamine-resistant, and was seen without the addition of protein kinase. In the presence of HgCl2 (2.5mm) or sodium deoxycholate (1%) no protein phosphorylation was observed. ProteinE1 was heavily phosphorylated in the presence of 200mm KCl, while its phosphorylation was inhibited by 20 m sodium dantrolene, an inhibitor of Ca2+ release. PhosphoproteinE3 was found in light and heavy sarcoplasmic reticulum vesicles whileE1 andE2 were found only in heavy vesicles. The phosphoproteinE2 had the properties of an intrinsic membrane protein while the proteinE1 bejaved as an extrinsic membrane protein. ProteinsE2 andE3 corresponded in mobility to minor sarcoplasmic reticulum proteins whileE1 had the same mobility as calsequestrin. The presence of high calcium (5mm) during electrophoresis caused calsequestrin to run at a lower molecular weight (56,000 instead of 64,000 daltons), and correspondingly the phosphoproteinE1 ran at a lower molecular weight. Finally, calsequestrin purified by a double gel electrophoresis method has been shown to be phosphorylated.  相似文献   

4.
Summary The effects of various agents on active sodium transport were studied in the toad bladder in terms of the equivalent circuit comprising an active conductanceK a, an electromotive forceE Na, and a parallel passive conductanceK p. For agents which affectK a, but notE Na orK p, the inverse slope of the plot of total conductance against short-circuit currentI 0 evaluatesE Na, and the intercept representsK p. Studies employing 5×10–7 m amiloride to depressK a indicate a changingE Na, invalidating the use of the slope technique with this agent. An alternative suitable technique employs 10–5 m amiloride, which reducesI 0 reversibly to near zero without effect onK p. Despite curvilinearity of the -I0 plot under these conditions,K p may therefore be estimated fairly precisely from the residual conductance. It then becomes possible to follow the dynamic behavior ofK a andE Na (in the absence of 10–5 m amiloride) by frequent measurements of andI 0, utilizing the relationshipsK a=K-K p, andK Na=I O/(K-K p). 2-deoxy-d-glucose (7.5×10–3 m) depressedK a without affectingE Na. Amiloride (5×10–7 m) depressedK a and enhancedE Na. Vasopressin (100 mU/ml) enhancedK a markedly and depressedE Na slightly. Ouabain (10–4 m) depressed bothK a andE Na. All of the above effects were noted promptly;K p was unaffected. The electromotive force of Na transportE Na appears not to be a pure energetic parameter, but to reflect kinetic factors as well, in accordance with thermodynamic considerations.  相似文献   

5.
Summary The conductance of the apical membrane of the toad urinary bladder was studied under voltage-clamp conditions at hyperpolarizing potentials (mucosa negative to serosa). The serosal medium contained high KCl concentrations to reduce the voltage and electrical resistance across the basal-lateral membrane, and the mucosal solution was Na free, or contained amiloride, to eliminate the conductance of the apical Na channels. As the mucosal potential (V m) was made more negative the slope conductance of the epithelium increased, reaching a maximum at conductance of the epithelium increased, reaching a maximum atV m=–100 mV. This rectifying conductance activated with a time constant of 2 msec whenV m was changed abruptly from 0 to –100 mV, and remained elevated for at least 10 min, although some decrease of current was observed. ReturningV m to+100 mV deactivated the conductance within 1 msec. Ion substitution experiments showed that the rectified current was carried mostly by cations moving from cell to mucosa. Measurement of K flux showed that the current could be accounted for by net movement of K across the apical membrane, implying a voltage-dependent conductance to K (G K). Mucosal addition of the K channel blockers TEA and Cs had no effect onG K, while 29mm Ba diminished it slightly. Mucosal Mg (29mm) also reducedG K, while Ca (29mm) stimulated it.G K was blocked by lowering the mucosal pH with an apparent pK1 of 4.5. Quinidine (0.5mm in the serosal bath) reducedG K by 80%.G K was stimulated by ADH (20 mU/ml), 8-Br-cAMP (1mm), carbachol (100 m), aldosterone (5×10–7 m for 18 hr), intracellular Li and extracellular CO2.  相似文献   

6.
Summary Isolation and characterization of Chinese hamster ovary cell mutants resistant to different DNA polymerase ase inhibitors (aphidicolin, ara-A and ara-C) have been described. A particular mutant (JK3-1-2A) characterized in detail was found to grow and synthesize DNA in medium containing an amount of aphidicolin tenfold greater than that which completely inhibited the growth and the DNA synthesis of the wild-type cells. An almost twofold increase in the specific activity of the DNA polymerase was seen in this mutant. The mutant DNA polymerase showed altered aphidicolin inhibition kinetics of dCMP incorporation; the apparent K m for dCTP and the apparent K i for aphidicolin were increased in the mutant. These alterations in the kinetic parameters were, however, abolished upon further purification of the enzyme. Ara-CTP was found to act as a competitive inhibitor of the dCMP incorporation by both the wild type and mutant enzymes. In contrast, the effect of aphidicolin on dCMP incorporation was either competitive (wild-type enzymes) or noncompetitive (mutant enzyme). The data presented showed that the sites of action for aphidicolin and ara-CTP were distinct; likewise the dCTP binding site appeared to be separate from other dNTP(s) binding sites. The drug resistance of the mutant was inherited as a dominant trait.Abbreviations ara-A 9--d-arabinofuranosyl adenine - ara-C 1--d-arabinofuranosyl cytosine - aph aphidicolin  相似文献   

7.
    
The M·AluI DNA-(cytosine C5)-methyltransferase (5mC methylase) acts on the sequence 5′-AGCT-3′. The amino acid sequences of known 5mC methylases contain ten conserved motifs, with a variable region between Motifs VIII and IX that contains one or more “target-recognizing domains” (TRDs) responsible for DNA sequence specificity. Monospecific 5mC methylases are believed to have only one TRD, while multispecific 5mC methylases have as many as five. M·AluI has the second-largest variable region of all known 5mC methylases, and sequence analysis reveals five candidate TRDs. In testing whether M·AluI is in fact monospecific it was found that AGCT methylation represents only 80–90% of the methylating activity of this enzyme, while control experiments with the enzyme M·HhaI gave no unexplained activity. Because individual TRDs can be deleted from multispecific methylases without general loss of activity, a series of insertion and deletion mutants of the M·AluI variable region were prepared. All deletions that removed more than single amino acids from the variable region caused significant loss of activity; a sensitive in vivo assay for methylase activity based on McrBC restriction suggested that the central portion of the variable region is particularly important. In some cases, multispecific methylases can accommodate a TRD from another multispecific methylase, thereby acquiring an additional specificity. When TRDs were moved from a multispecific methylase into two different locations in the variable region of M·AluI, all hybrid enzymes had greatly reduced activity and no new specificities. M·AluI thus behaves in most respects as a monospecific methylase despite the remarkable size of its variable region. Received: 16 May 1997 / Accepted: 12 August 1997  相似文献   

8.
Summary Alanine was the best amino donor among various amino acids and NH4Cl for the phenylalanine production of Micrococus luteus. l-Alanine was regenerated at the rate of 9.2 moles/min/g dry cells from NH4Cl and pyruvate by immobilized Clostridium butyricum-alanine dehydrogenase. l-Phenylalanine was continuously produced from hydrogen, NH4Cl and phenylpyruvate by coupling immobilized C. butyricum, alanine dehydrogenase and M. luteus. The rate of phenylalanine production was 1.74 moles/min/g dry cells.  相似文献   

9.
The sialidase secreted byClostridium chauvoei NC08596 was purified to apparent homogeneity by ion-exchange chromatography, gel filtration, hydrophobic interaction-chromatography, FPLC ion-exchange chromatography, and FPLC gel filtration. The enzyme was enriched about 10 200-fold, reaching a final specific activity of 24.4 U mg–1. It has a relatively high molecular mass of 300 kDa and consists of two subunits each of 150 kDa. The cations Mn2+, Mg2+, and Ca2+ and bovine serum albumin have a positive effect on the sialidase activity, while Hg2+, Cu2+, and Zn2+, chelating agents and salt decrease enzyme activity. The substrate specificity, kinetic data, and pH optimum of the enzyme are similar to those of other bacterial sialidases.Abbreviations FPLC fast protein liquid chromatography - NCTC National Collection of Type Cultures - ATCC American Type Culture Collection - MU-Neu5Ac 4-methylumbelliferyl--d-N-acetylneuraminic acid - buffer A 0.02m piperazine, 0.01m CaCl2, pH 5.5 - buffer B 0.02m piperazine, 0.01m CaCl2, 1.0m NaCl, pH 5.5 - buffer C 0.1m sodium acetate, 0.01m CaCl2, pH 5.5 - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - Neu5Ac N-acetylneuraminic acid - BSM bovine submandibular gland mucin - GD1a IV3Neu5Ac, II3Neu5Ac-GgOse4Cer - GM1 II3Neu5Ac-GgOse4Cer - MU-Neu4,5Ac2 4-methylumbelliferyl--d-N-acetyl-4-O-acetylneuraminic acid - TLC thin-layer chromatography - HPTLC high performance thin-layer chromatography - EDTA ethylenediamine tetraacetic acid - EGTA ethylene glycol bis(2-aminoethyl-ethen)-N,N,N,N-tetraacetic acid - BSA bovine serum albumin - Neu5Ac2en 2-deoxy-2,3-didehydro-N-acetylneuraminic acid - IEF isoelectric focusing - IEP isoelectric point  相似文献   

10.
Summary In the NaK-ATPase proteoliposomes (PLs), the NaK-pump activity, Na+ uptake, and ATP hydrolysis were apparently enhanced by carbonyl cyanidem-chlorophenylhydrazone (CCCP) and other ionophores without ion gradients. These ionophore effects were not cation specific. Without ionophores, the PL's ATPase activity fell to its steady-state value within 3 sec at 15°C. This decrease in activity disappeared in the presence of CCCP. Since CCCP is believed to enhance proton mobility across the lipid bilayer and dissipate membrane potential (V m ), we postulated that aV m build-up partially inhibits the PLs by changing the conformation of the NaK-pump, and that CCCP eliminated this partial inhibition. Since this activation required extracellular K+ and high ATP concentration in the PLs, CCCP must affect the conversion between the phosphorylated forms of NaK-ATPase (EP); this step has been suggested by Goldschlegger et al. (1987) to be the voltage-sensitive step (J. Physiol. (London) 387:331–355). Although cytoplasmic K+ accelerated the change of ADP-and K+-sensitive EP (E*P) to K+-sensitive ADP-insensitive EP (E2P), CCCP did not compete with cytoplasmic K+ when cytoplasmic Na+ was saturated. When the PLs were phosphorylated with 20 m ATP and 20 m palmitoyl CoA instead of with high concentration of ATP, CCCP increased the E*P content and decreased the ADP-sensitive K+-insensitive EP (E1P). The results described above suggest that CCCP affects the E1P to E*P change in the E1PE*PE2P conversion and that this reaction step is inhibited byV m .  相似文献   

11.
AvaI andBsoBI restriction endonucleases are isoschizomers which recognize the symmetric sequence 5CYCGRG3 and cleave between the first C and second Y to generate a four-base 5 extension. TheAvaI restriction endonuclease gene (avaIR) and methylase gene (avaIM) were cloned intoEscherichia coli by the methylase selection method. TheBsoBI restriction endonuclease gene (bsoBIR) and part of theBsoBI methylase gene (bsoBIM) were cloned by the endo-blue method (SOS induction assay), and the remainder ofbsoBIM was cloned by inverse PCR. The nucleotide sequences of the two restriction-modification (RM) systems were determined. Comparisons of the predicted amino acid sequences indicated thatAvaI andBsoBI endonucleases share 55% identity, whereas the two methylases share 41% identity. Although the two systems show similarity in protein sequence, their gene organization differs. TheavaIM gene precedesavaIR in theAvaI RM system, while thebsoBIR gene is located upstream ofbsoBIM in theBsoBI RM system. BothAvaI andBsoBI methylases contain motifs conserved among the N4 cytosine methylases.  相似文献   

12.
Summary The degradation of three non-phenolic -O-4 diarylpropane lignin model compounds was studied in cultures of the white-rot fungus Phlebia radiata. The degradation pattern of the model compound 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (I) was also compared with that of Phanerochaete chrysosporium under conditions where both fungi were cultivated without agitation in an oxygen atmosphere. Compound I was readily degraded by both fungi, and qualitatively the degradation patterns were quite similar. The product, after C-C bond cleavage, was veratraldehyde (IV) which was almost stoichiometrically reduced to veratryl alcohol (V). However, large amounts of V were detected only in P. chrysosporium cultures. Experiments with the model compound 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)propane-1,3-diol (II) showed that in the presence of II, the total amount of veratryl compounds accounted for 15–33 m in standing cultures of Phlebia radiata. The model compound 1-(3,4-dimethoxyphenyl)-2-(4-methoxyphenoxy) propane-1,3-diol (III) was more readily degraded than I and II. The results indicated that, in P. radiata cultures, the acting enzymes were lignin peroxidases and IV reducing enzyme, while laccase was less important. Offprint requests to: A. Hatakka  相似文献   

13.
DNA methylation in Bacillus amyloliquefaciens strain H (Bam)2 and Bacillus brevis (Bbv) has been examined by a variety of techniques. In vivo labelling studies revealed that Bam DNA contains no N6-methyladenine (MeAde), but contains 5-methylcytosine (MeCyt); approximately 0·7% of the cytosine residues are methylated.DNA methylase activity was partially purified from both Bam and Bbv; the Bam enzyme preparation transferred methyl groups from S-adenosyl-l-[methyl-3H]methionine ([3H]AdoMet) to specific DNA cytosine residues only; in agreement with Vanyushin & Dobritsa (1975), the Bbv enzyme preparation methylated both DNA adenine and cytosine residues. The (partial) sequence specificity of the methylases was determined by analyzing [3H]methyl-labelled dinucleotides obtained from enzymatic digests of DNA methylated in vitro. Bam and Bbv each contain a DNA-cytosine methylase with overlapping sequence specificity; e.g. both enzymes produce G-C1, C1-A and C1-T. This is consistent with a single, twofold symmetrical methylation sequence of 5′ … G-C1-(A or T)-G-C … 3′; this was observed by Vanyushin & Dobritsa (1975) for a different Bbv strain. Bam contains a second DNA-cytosine methylase (not present in Bbv), which produces T-C1 and C1-T. We propose that this methylase is the BamI modification enzyme, and that the modified sequence is 5′ … G-G-A-T-C1-C … 3′.Bbv appears to contain two DNA-adenine methylases which produce the (partial) methylated sequences, 5′ … G-A1-T … 3′ and 5′ … A-A1-G … 3′, respectively; in the former case, all the G-A-T-C sites on Bbv DNA appear to be methylated.  相似文献   

14.
Orotidine-5-monophosphate pyrophosphorylase (OMPppase, E.C. 2.4.2.10) and orotidylate decarboxylase (OMPdecase, E.C. 4.1.1.23) were purified from Serratia marcescens HY. These enzymes required physical association for maximal catalytic activities and formed a fragile complex with dihydroorotase (DHOase, E.C. 3.5.2.3.). OMPppase reversibly lost 50% of its activity upon separation from DHOase. The kinetic characteristics of OMPppase were modified by this separation. In the presence of DHOase, the K ms for PRPP and orotate were stoichiometric: 2.3×10–6 m and 2.6×10–6 m, respectively. Following separation, the K ms were significantly different: 1.3 × 10–6 m for PRPP and 4.1×10–6 m for orotate. OMPppase and OMPdecase could be reversibly separated by acrylamide gel electrophoresis, but the separation was accompanied by a loss of catalytic efficiency for both enzymes. DHOase readily associated into multiple molecular forms and could not be purified. The DHOase-OMPppase-OMPdecase interactions demonstrate that a weakly aggregated, multifunctional enzyme complex participates in the biosynthesis of pyrimidine nucleotides in S. marcescens. This unique association of nonsequential biosynthetic enzymes may represent a larger complex which provides a channeling or regulatory unit.This work was supported by grants from the National Science Foundation (NSF GB 5811) and the Office of Naval Research (Nonr 4413). One of us (J.W.) was a National Science Foundation Graduate Fellow.  相似文献   

15.
The approximate base composition of pure deoxyribonucleic acid (DNA) can be quickly estimated from the absorbancy ratio E260/E280 in 0.1n acetic acid according to the empirical relation % GC=168.6–87.4 (E260/E280), valid in the range 40 to 70% GC (molar per cent guanine ... cytosine). The method is only accurate to within + 3% GC. It can be used when a quick, rough estimate of DNA base composition is required, e.g., to check the correct taxonomic position of new isolates or to give an approximation of the melting point Tm or buoyant density of an unknown DNA sample. The method can not be recommended for distinguishing between two genera with closely related % GC values, or for finer distinction within one genus.  相似文献   

16.
A dual-wavelength fluorimeter was constructed, which used two light emitting diodes (LEDs) to excite the fluorescence dye RH 421 alternately with two different wavelengths. The ratio of the emissions at the two excitation wavelengths provided a drift-insensitive signal, which allowed detection of very small changes of the fluorescence intensity. Those small changes were induced by ion binding and release in conformation E1 of the Na,K-ATPase. Titration experiments were performed to determine equilibrium dissociation constants (± standard deviation) for each step in the complete binding and release sequence: 0.12 ± 0.01 mM (E2(K2) KE1), 0.08 ± 0.01 mM (KE1 E1), 3.0 ± 0.2 mM (NaE1 E1), 5.2 ± 0.4 mM (Na2E1 NaE1) and 6.5 ± 0.4 mM (Na3E1 Na2E1) at pH 7.2 and T=16°C. These numbers show that the affinities of the binding sites exposed to the cytoplasm, are higher for K+ than for Na+ ions, similar to what was found on the extracellular side. The physiological requirement for extrusion of Na+ from the cytoplasm, and for import of K+ from the extracellular medium seems to be facilitated not by favorable binding affinities in state E1 but by the two ATP-driven reaction steps of the cycle, E2(K2) + ATP K2E1 · ATP and Na3E1 · ATP (Na3) El-P, which border the ion exchange reactions at the binding sites in conformation E1. Correspondence to: H.-J. Apell  相似文献   

17.
Summary Electrical membrane properties of the cellular slime moldDictyostelium discoideum were investigated with the use of intracellular microelectrodes. The rapid potential transients (1 msec) upon microelectrode penetration of normal cells had a negative-going peak-shaped time course. This indicates that penetration of a cell with a microelectrode causes a rapid depolarization, which can just be recorded by the microelectrode itself. Therefore, the initial (negative) peak potential transient valueE p (–19 mV) should be used as an indicator of the resting membrane potentialE m ofD. discoideum before impalement, rather than the subsequent semistationary depolarized valueE n (–5 mV). Using enlarged cells such as giant mutant cells (E p=–39 mV) and electrofused normal cells (E p=–30 mV) improved the reliability ofE p as an indicator ofE m. From the data we concluded thatE m ofD. discoideum cells bathed in (mm) 40 NaCl, 5 KCl and 1 CaCl2 is at least –50 mV. This potential was shown to be dependent on extracellular potassium. The average input resistanceR i of the impaled cells was 56 M for normalD. discoideum. However, our analysis indicates that the membrane resistance of these cells before impalement is >1 G. Specific membrane capacitance was 1–3 pF/cm2. Long-term recording of the membrane potential showed the existence of a transient hyperpolarization following the rapid impalement transient. This hyperpolarization was associated with an increase inR i of the impaled cell. It was followed by a depolarization, which was associated with a decrease inR i. The depolarization time was dependent on the filling of the microelectrode. The present characterization of the electrical membrane properties ofDictyostelium cells is a first step in a membrane electrophysiological analysis of signal transduction in cellular slime molds.  相似文献   

18.
Summary (H,K)-ATPase containing membranes from hog stomach were attached to black lipid membranes. Currents induced by an ATP concentration jump were recorded and analyzed. A sum of three exponentials ( 1 -1 400 sec–1, 2 -1 100 sec–1, 3 -1 10 sec–1; T = 300 K, pH 6, MgCl2 3 mm, no K+) was fitted to the transient signal. The dependence of the resulting time constants and the peak current on electrolyte composition, ATP conversion rate, temperature, and membrane conductivity was recorded. The results are consistent with a reaction scheme similar to that proposed by Albers and Post for the NaK-ATPase. Based on this model the following assignments were made: 2 corresponds to ATP binding and exchange with caged ATP. 1 describes the phosphorylation reaction E1 · ATP E1P. The third, slowest time constant 3 is tentatively assigned to the E1P E2P transition. This is the first electrogenic step and is accelerated at high pH and by ATP via a low affinity binding site. The second electrogenic step is the transition from E2K to E1H. The E2K E1H equilibrium is influenced by potassium with an apparent K 0.5 of 3 mm and by the pH. Low pH and low potassium concentration stabilize the E1 conformation.The authors wish to thank Dr. E. Grell and Mr. G. Schimmack. MPI Frankfurt, for synthesizing caged ATP, Mrs. S. Meister, Hoechst AG Frankfurt, for valuable help to prepare the (H,K)-ATPase, and Dr. W. Haase, MPI Frankfurt, for electron microscope pictures. (H,K)-ATPase for preliminary experiments was provided by Dr. W. Beil, Medizinische Hochschule Hannover, Dr. H. Swarts, University of Nijmegen, and Dr. G. Metzger, Hoechst AG Frankfurt. The work was supported by the Deutsche Forschungsgemeinschaft (SFB 169).  相似文献   

19.
N6-METHYLADENINE (6-MeAde) and 5-methylcytosine occur as minor bases in bacterial and phage DNA1–7 and seem to result from the selective methylation of adenine and cytosine residues by specific DNA methylases8. Methylation is the final stage in DNA synthesis and is essential for the phenomenon of host modification of phages9–11; it is one of the mechanisms controlling DNA replication in the cell12, 13. A study of the distribution of minor bases in DNA is therefore important not only for the elucidation of the specificity and mechanism of action of DNA methylases but also for an understanding of the purpose of this methylation. We believe that in Escherichia coli, DNA methylase exerts its action on adenine residues in chain terminating triplets: 6-MeAde may serve as a signal for gene termination in this system.  相似文献   

20.
Summary Toad urinary bladders were mounted in Ussing-type chambers and voltage-clamped. At nonzero voltages only, small fluctuations in current, I, and therefore in tissue conductance, G t, were detected. These fluctuations were caused by the smooth muscle of the underlying tissue which could be monitored continuously and simultaneously with the current,I. Inhibition of the smooth muscle contraction with verapamil (2×10–5 m) abolished the fluctuations inI andG t. Amiloride (10–4 m) had no significant effect on the magnitude of G t, oxytocin increasedG t without affecting G t, and mucosal hypertonicity produced by mannitol increased G t. These results are consistent with the hypothesis that two parallel pathways exist for passive current flow across the toad urinary bladder: one, the cellular pathway, was not affected by smooth muscle activity; the other, the paracellular pathway, was the route whose conductance was altered by the action of the smooth muscle.Thus the relationship between the cellular and shunt conductances of the epithelium of the toad urinary bladder, under a variety of conditions, can be investigated by utilizing the effects of the movement of the smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号