首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The action of androgens on the immunocytochemical distribution of mK1, a true tissue kallikrein, was examined in the submandibular gland (SMG) of developing and adult mice by indirect enzyme-labeled and immunogold-labeled antibody methods for light and electron microscopy, respectively. In both sexes at 3 weeks of age, essentially all of the immature granular convoluted tubule (GCT) cells were uniformly immunostained. At 4 weeks of age (the onset of puberty), morphological differences between the two sexes appeared in the GCTs, in which some cells became immunonegative. Thereafter, the immunonegative GCT cells became more abundant in the SMG of males than of females and considerable intercellular variation in staining intensity for mK1 was seen, especially in males. A few slender GCT cells with strong immunoreactivity appeared in GCT segments only in males. Castration of males resulted in an increase in the number of immunopositive GCT cells, whereas administration of dihydrotestosterone (DHT) decreased the number of immunopositive GCT cells in the SMGs of both sexes. Slender GCT cells immunoreactive for mK1 were seen in females treated with DHT for 6 days. However, there were no immunostained slender GCT cells in female SMGs after injection of DHT for 2 weeks. Immunoelectron microscopy disclosed this type of cell in male SMGs, which closely resembles immature GCT cells of prepubertal mice, with a few small secretory granules uniformly labeled with gold particles, a sparse Golgi apparatus and RER, and basal infoldings. In mature male SMGs and in SMGs of DHT-treated females and castrated males, typical GCT cells had a well-developed Golgi apparatus and a net-like RER but few to no basal infoldings, whereas in the female gland equivalent cells had moderately developed RER and some basal infoldings. These results suggest that mK1 is one of the enzymes characteristically present in immature GCT cells and that its synthesis is inhibited in part by androgens, resulting in decreased numbers of immunopositive cells.  相似文献   

2.
牙本质基质蛋白1(dentin matrix protein 1,DMP1)是一种高度磷酸化的偏酸性非胶原蛋白, 属于小整合素结合配体N端连接糖蛋白(small integrin-binding ligand, N-linked glycoprotein, SIBLINGs)家族.和SIBLINGs家族其它成员一样,DMP1基因定位于人类染色体4q21除存在于牙组织外,该蛋白还普遍分布于骨组织中.在骨组织与细胞中已发现4种DMP1的主要存在形式,即全长DMP1、57 kD C-DMP1、37 kD N-DMP1、DMP1-PG.它们的分布与功能均不相同,但对骨的正常形成均有重要意义. DMP1的氨基酸序列拥有大量的酸性结构域,携带负电荷,与钙离子有较强的结合能力.它在体外能够促进羟基磷灰石形成,并调控细胞分化,在体内参与硬组织的矿化过程.另外,DMP1的水解过程对其调控矿化的功能十分关键.人体内DMP1基因的突变可导致常染色体隐性低血磷性佝偻病.本文就近几年对DMP1基因结构与调控、蛋白结构与代谢、在骨组织与细胞中的分布及其对骨形成调控作用的研究进展作一综述.  相似文献   

3.
4.
The blood-brain barrier (BBB) is a tight boundary formed between endothelial cells and astrocytes, which separates and protects brain from most pathogens as well as neural toxins in circulation. However, detailed molecular players involved in formation of BBB are not completely known. Dentin matrix protein 1 (DMP1)-proteoglycan (PG), which is known to be involved in mineralization of bones and dentin, is also expressed in soft tissues including brain with unknown functions. In the present study, we reported that DMP1-PG was expressed in brain astrocytes and enriched in BBB units. The only glycosylation site of DMP1 is serine89 (S89) in the N-terminal domain of the protein in mouse. Mutant mice with DMP1 point mutations changing S89 to glycine (S89G), which completely eradicated glycosylation of the protein, demonstrated severe BBB disruption. Another breed of DMP1 mutant mice, which lacked the C-terminal domain of DMP1, manifested normal BBB function. The polarity of S89G-DMP1 astrocytes was disrupted and cell-cell adhesion was loosened. Through a battery of analyses, we found that DMP1 glycosylation was critically required for astrocyte maturation both in vitro and in vivo. S89G-DMP1 mutant astrocytes failed to express aquaporin 4 and had reduced laminin and ZO1 expression, which resulted in disruption of BBB. Interestingly, overexpression of wild-type DMP1-PG in mouse brain driven by the nestin promoter elevated laminin and ZO1 expression beyond wild type levels and could effectively resisted intravenous mannitol-induced BBB reversible opening. Taken together, our study not only revealed a novel element, i.e., DMP1-PG, that regulated BBB formation, but also assigned a new function to DMP1-PG.  相似文献   

5.
6.
K Sawada  T Noumura 《Acta anatomica》1992,143(3):241-245
The X-linked testicular feminization mutation (Tfm/Y) in the mouse is characterized by androgen insensitivity of the target cells. The aim of this study was to examine sexually dimorphic development of the submandibular gland of Tfm/Y mutant mice in comparison with those of wild-type male, wild-type female and heterozygous Tfm female mice. In either 30- or 90-day-old wild-type male mice, the granular convoluted tubules (GCT) of the glands were more developed, and the relative occupied areas (ROA) of GCT were superior to those of the age-matched wild-type and heterozygous Tfm females. In androgen-insensitive Tfm/Y mice, the glandular structures rather resembled the female glands, showing lower values of the ROA of the GCT. Sex differences in the mitotic rate were observed at 30 days of age, being significantly higher in the wild-type male GCT than in the female GCT. Thereafter, the mitotic rate of the wild-type male GCT declined to the female levels by 90 days of age. The mitotic rate of GCT in Tfm/Y mutants was as low as those of the females during observation periods. An other three regions, the acini, the intercalated ducts and the excretory striated ducts, were not significantly different in either the ROA or the mitotic rate among wild-type males and females, and Tfm/Y. On the other hand, either the ROA or the mitotic activity of GCT of the glands in Tfm/Y mutants was completely unaffected by 5 alpha-dihydrotestosterone (DHT).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.

Introduction

In the nonobese diabetic (NOD) mouse model of Sjögren's syndrome, lymphocytic infiltration is preceded by an accumulation of dendritic cells in the submandibular glands (SMGs). NOD mice also exhibit an increased frequency of mature, fractalkine receptor (CX3C chemokine receptor [CX3CR]1) expressing monocytes, which are considered to be precursors for tissue dendritic cells. To unravel further the role played by fractalkine-CX3CR1 interactions in the salivary gland inflammation, we studied the expression of fractalkine in NOD SMGs.

Methods

We studied protein expression using Western blot analysis of whole tissue lysates. Protease activity was measured in salivary gland tissue lysates using fluorimetric substrates. Digestive capacity of enzymes was determined by in vitro incubation of recombinant enzyme and fractalkine, followed by protein staining and Western blot.

Results

Fractalkine was detected in salivary glands of both NOD and control mice at all ages. Western blot analysis showed fractalkine cleavage with increasing age, which was more pronounced in NOD mice. This cleavage resulted in a decrease in the 31 kDa form of the protein, and the generation of an approximately 19 kDa band. Furthermore, in NOD animals older than 15 weeks, we noted the presence of a unique approximately 17 kDa fragment. This cleavage was organ specific, because it did not occur in brain or pancreas. Increased gelatinase and α-secretase activity were detected in NOD SMG and contributed to cleavage of the 31 kDa protein. Because aberrant cleavage products may induce autoimmunity, we studied the presence of autoantibodies against fractalkine. Indeed, NOD mice exhibited significantly more antibodies against fractalkine than did control animals.

Conclusion

These data indicate that aberrant proteolytic activity in the NOD SMG results in increased fractalkine cleavage and generation of a unique fractalkine fragment. This specific cleavage may contribute to autoimmunity.  相似文献   

8.
The kallikrein gene family encodes for at least four different proteases in the mouse submandibular gland (SMG): mK1 (true tissue kallikrein), mK9, mK13, and mK22. These enzymes and many other biologically active proteins are synthesized by the granular convoluted tubule (GCT), a specialized segment of the SMG duct system. The GCT is under multihormonal regulation by androgens, thyroid hormones, and adrenocortical hormones. Androgens suppress synthesis of mK1 in the SMG but enhance expression of the other three kallikreins. We prepared an antibody with limited immunoreactivity for mK1 and used it to examine the effects of androgen status on the distribution of this isozyme in the SMGs of developing and mature mice by immunoperoxidase staining for the light microscope and immunogold labeling for the electron microscope. In prepubertal mice, every immature GCT cell contains mK1, confined to an accumulation of small granules in the subluminal cytoplasm. In mature mice, not every GCT cell contains mK1, and in those cells that do there is considerable intergranular variation in the intensity of staining for mK1. GCT cells containing mK1 are much more abundant in the glands of females than of males, resulting in a peculiar sexually dimorphic mosaic distribution of this isozyme in the mature SMG. Castration of adult males increases the number of GCT cells expressing mK1. Administration of androgen to intact or castrated males or to intact females reduces the number of cells staining for mK1. In all cases, immunogold labeling for mK1 is confined to secretory granules. No fine structural differences were noted between cells that were positively or negatively stained for mK1. Therefore, although GCT cells appear to be composed of a uniform population of cells on the basis of morphology alone, they are not homogeneous in their content of secretory proteins. These results indicate that androgen regulation of GCT cells is more complex than has been appreciated to date.  相似文献   

9.
10.
Phospholipase D plays an anti-apoptotic role but little is known about dynamics of phospholipase D turnover during apoptosis. We have recently identified phospholipase D1 as a new substrate of caspases which generates the N-terminal and C-terminal fragment of phospholipase D1. In the present study, we tried to investigate whether association of the caspase cleavage fragments may be involved in regulation of apoptosis. Ectopically expressed C-terminal fragment, but not N-terminal fragment of phospholipase D1, is exclusively imported into the nucleus via a nuclear localization sequence; however, endogenous C-terminal fragment of phospholipase D1 from etoposide-induced apoptotic cells and Alzheimer's disease brain tissues with active caspase-3, was localized in the cytosolic fraction as well as the nuclear fraction. Intermolecular association between the two fragments of phospholipase D1 through hydrophobic residues within the catalytic motif inhibited nuclear localization of C-terminal fragment of phospholipase D1, and two catalytic motif and nuclear localization sequence regulated nuclocytoplasmic shuttling of phospholipase D1. Moreover, hydrophobic residues involved in the intermolecular association are also required for both its enzymatic activity and anti-apoptotic function. Taken together, we demonstrate that interdomain association and dissociation of phospholipase D1 might provide new insights into modulation of apoptosis.  相似文献   

11.
Spleen is an important lymphoid organ which exerts immune activities throughout the life in mammals. In this study, we investigated the age- and sex-dependent effect of exogenous melatonin on expression pattern of MT1 and MT2 melatonin receptor proteins in spleen of laboratory Swiss albino mice in three different age-groups – 2, 4, and 8 months. The melatonin receptor expression patterns were studied by immunohistochemical localization and Western blot analysis. Immunohistochemical study showed reactivity of MT1 and MT2 melatonin receptors in spleen of both male and female mice. Exogenous melatonin significantly showed age- and sex-dependent expression pattern of MT1 receptor protein, while MT2 receptors showed only age-dependent differential expression patterns in both male and female mice. Therefore, this study may suggest that exogenous melatonin is modulating MT1 and MT2 receptor protein expression pattern in age- and sex-dependent manner in spleen of mice.  相似文献   

12.
13.
Emerging data suggest that metastasis-associated protein 1 (MTA1) represses ligand-dependent transactivation functions of estrogen receptor-alpha in cultured breast cancer cells and that MTA1 is upregulated in human breast tumors. However, the role of MTA1 in tumorigenesis in a physiologically relevant animal system remains unknown. To reveal the role of MTA1 in mammary gland development, transgenic mice expressing MTA1 under the control of the mouse mammary tumor virus promoter long terminal repeat were generated. Unexpectedly, we found that mammary glands of these virgin transgenic mice exhibited extensive side branching and precocious differentiation because of increased proliferation of ductal and alveolar epithelial cells. Mammary glands of virgin transgenic mice resemble those from wild-type mice in mid-pregnancy and inappropriately express beta-casein, cyclin D1 and beta-catenin protein. Increased ductal growth was also observed in the glands of ovariectomized female mice, as well as of transgenic male mice. MTA1 dysregulation in mammary epithelium and cancer cells triggered downregulation of the progesterone receptor-B isoform and upregulation of the progesterone receptor-A isoform, resulting in an imbalance in the native ratio of progesterone receptor A and B isoforms. MTA1 transgene also increased the expression of progesterone receptor-A target genes Bcl-XL (Bcl2l1) and cyclin D1 in mammary gland of virgin mice, and, subsequently, produced a delayed involution. Remarkably, 30% of MTA1 transgenic females developed focal hyperplastic nodules, and about 7% exhibited mammary tumors within 18 months. These studies establish, for the first time, a potential role of MTA1 in mammary gland development and tumorigenesis. The underlying mechanism involves the upregulation of progesterone receptor A and its targets, Bcl-XL and cyclin D1.  相似文献   

14.
The cellular localization of the human androgen receptor was visualized immunohistochemically using a mouse monoclonal antibody (MAb) F39.4, directed against a fragment of the N-terminal domain of the androgen receptor. The nuclear immunoreactivity of various human tissues with F39.4 was generally consistent with earlier biochemical and autoradiographic data. However, previously suggested androgen receptor expression in thyroid, pancreatic, gastrointestinal, and bladder tissues was not confirmed immunohistochemically. Stratified squamous epithelia of vagina and cervix showed selective immunostaining of the basal cell layer, whereas in the preputial epithelium the intensity of immunoreactivity decreased gradually with maturation. In contrast, glandular epithelia of the sweat glands, male accessory sex organs, and female breast showed nearly exclusive F39.4 staining of the inner cylindric layer. In the testis, Sertoli cells, peritubular myoid cells, and interstitial cells were immunoreactive with MAb F39.4. Expression of the androgen receptor by smooth muscle tissue was largely confined to the male reproductive organs. The specificity and sensitivity of this simple and rapidly performed immunohistochemical technique in the detection of the human androgen receptor at the cellular and subcellular level makes it worthwhile to study tissue androgen receptor expression by immunohistochemistry in physiological and pathological states.  相似文献   

15.

Background

In human breast cancer normal mammary cells typically develop into hyperplasia, ductal carcinoma in situ, invasive cancer, and metastasis. The changes in gene expression associated with this stepwise progression are unclear. Mice transgenic for mouse mammary tumor virus (MMTV)-Wnt-1 exhibit discrete steps of mammary tumorigenesis, including hyperplasia, invasive ductal carcinoma, and distant metastasis. These mice might therefore be useful models for discovering changes in gene expression during cancer development.

Results

We used cDNA microarrays to determine the expression profiles of five normal mammary glands, seven hyperplastic mammary glands and 23 mammary tumors from MMTV-Wnt-1 transgenic mice, and 12 mammary tumors from MMTV-Neu transgenic mice. Adipose tissues were used to control for fat cells in the vicinity of the mammary glands. In these analyses, we found that the progression of normal virgin mammary glands to hyperplastic tissues and to mammary tumors is accompanied by differences in the expression of several hundred genes at each step. Some of these differences appear to be unique to the effects of Wnt signaling; others seem to be common to tumors induced by both Neu and Wnt-1 oncogenes.

Conclusion

We described gene-expression patterns associated with breast-cancer development in mice, and identified genes that may be significant targets for oncogenic events. The expression data developed provide a resource for illuminating the molecular mechanisms involved in breast cancer development, especially through the identification of genes that are critical in cancer initiation and progression.  相似文献   

16.
Depending on experimental conditions we have found that photo-inhibitory treatment of photosystem II (PSII) core complexes, isolated from wheat, can generate two fragments of about 23-24 kDa that contain either the C-terminal or N-terminal regions of the D1-protein. A 24 kDa C-terminal fragment appears when the water splitting reaction is not functional and an electron acceptor is present. This 'donor'-side inhibition also generates an N-terminal fragment of about 10 kDa and is suggested to be due to the cleavage of a peptide bond in the region connecting transmembrane segments I and II of the D1-protein. In contrast, an N-terminal 23 kDa D1-protein fragment is detected when the water splitting reactions of the isolated complex are active, and occurs in the absence of an added electron acceptor. This 'acceptor'-side photo-inhibition also generates a C-terminal fragment of about 10 kDa.  相似文献   

17.
K Sawada  T Noumura 《Acta anatomica》1991,140(2):97-103
The aims of this study were to characterize sexual dimorphism in the submandibular glands of young adult mice and to determine how sex differences arise during postnatal development. In the mouse submandibular glands, prominent sexual dimorphism was observed at 30 days of age, when the male gland was superior in both the relative occupied area (ROA) and the mitotic rate of the granular convoluted tubules (GCT) to those of the female. By neonatal castration, this sexual dimorphism was abolished, and the intraglandular structures of castrated males were similar to those of normal females. In castrated mice of both sexes, daily treatment with testosterone and 5 alpha-dihydrotestosterone for 10 days from 20 days induced only the ROA of the GCT to increase to the normal male levels but not those of the other three regions of the glands, the acini, intercalated ducts and excretory striated ducts. Testosterone responsiveness of the glands, considering both the glandular weight gain and the mitotic rate of the GCT, was significantly higher in castrated males than in castrated females. On the other hand, 17 beta-estradiol had no effect on the glands of castrated mice. Therefore, the present study suggests that the testicular hormones are responsible for the masculine development of GCT of the glands, but not the ovarian hormones, and that there is a sex difference in the responsiveness of the glands to testosterone, which is more effective in males than in females.  相似文献   

18.
A Kumar  S H Wilson 《Biochemistry》1990,29(48):10717-10722
A1 is a major core protein of the mammalian hnRNP complex, and as a purified protein of approximately 34 kDa, A1 is a strong single-stranded nucleic acid binding protein. Several lines of evidence suggest that the protein is organized in discrete domains consisting of an N-terminal segment of approximately 22 kDa and a C-terminal segment of approximately 12 kDa. Each of these domains as a purified fragment is capable of binding to both ssDNA and RNA. We report here that A1 and its C-terminal domain fragment are capable of potent strand-annealing activity for base-pair complementary single-stranded polynucleotides of both RNA and DNA. This effect is not stimulated by ATP. Compared with A1 and the C-terminal fragment, the N-terminal domain fragment has negligible annealing activity. These results indicate that A1 has biochemical activity consistent with a strand-annealing role in relevant reactions, such as pre-mRNA splicing.  相似文献   

19.
Aquaporin 5 (AQP5) is known to be central for salivary fluid secretion. A study of the temporal-spatial distribution of AQP5 during submandibular gland (SMG) development and in adult tissues might offer further clues to its unknown role during development. In the present work, SMGs from embryonic day (E) 14.5–18.5 and postnatal days (P) 0, 2, 5, 25, and 60 were immunostained for AQP5 and analyzed using light microscopy. Additional confocal and transmission electron microscopy were performed on P60 glands. Our results show that AQP5 expression first occurs in a scattered pattern in the late canalicular stage and becomes more prominent and organized in the terminal tubuli/pro-acinar cells towards birth. Additional apical membrane staining in the entire intralobular duct is found just prior to birth. During postnatal development, AQP5 is expressed in both the luminal and lateral membrane of pro-acinar/acinar cells. AQP5 is also detected in the basal membrane of acinar cells at P25 and P60. In the intercalated ducts at P60, the male glands show apical staining in the entire segment, while only the proximal region is positive in the female glands. These results demonstrate an evolving distribution of AQP5 during pre- and postnatal development in the mouse SMGs.  相似文献   

20.
Laminin alpha chains have unique spatiotemporal expression patterns during development and defining their function is necessary to understand the regulation of epithelial morphogenesis. We investigated the function of laminin alpha5 in mouse submandibular glands (SMGs). Lama5(-/-) SMGs have a striking phenotype: epithelial clefting is delayed, although proliferation occurs; there is decreased FGFR1b and FGFR2b, but no difference in Lama1 expression; later in development, epithelial cell organization and lumen formation are disrupted. In wild-type SMGs alpha5 and alpha1 are present in epithelial clefts but as branching begins alpha5 expression increases while alpha1 decreases. Lama5 siRNA decreased branching, p42 MAPK phosphorylation, and FGFR expression, and branching was rescued by FGF10. FGFR siRNA decreased Lama5 suggesting that FGFR signaling provides positive feedback for Lama5 expression. Anti-beta1 integrin antibodies decreased FGFR and Lama5 expression, suggesting that beta1 integrin signaling provides positive feedback for Lama5 and FGFR expression. Interestingly, the Itga3(-/-):Itga6(-/-) SMGs have a similar phenotype to Lama5(-/-). Our findings suggest that laminin alpha5 controls SMG epithelial morphogenesis through beta1 integrin signaling by regulating FGFR expression, which also reciprocally regulates the expression of Lama5. These data link changes in basement membrane composition during branching morphogenesis with FGFR expression and signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号