首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ubiquitin chains modify a major subset of the proteome, but detection of ubiquitin signaling dynamics and localization is limited due to a lack of appropriate tools. Here, we employ ubiquitin-binding domain (UBD)-based fluorescent sensors to monitor linear and K63-linked chains in?vitro and in?vivo. We utilize the UBD in NEMO and ABIN (UBAN) for detection of linear chains, and RAP80 ubiquitin-interacting motif (UIM) and TAB2 Npl4 zinc finger (NZF) domains to detect K63 chains. Linear and K63 sensors decorated the ubiquitin coat surrounding cytosolic Salmonella during bacterial autophagy, whereas K63 sensors selectively monitored Parkin-induced mitophagy and DNA damage responses in fixed and living cells. In addition, linear and K63 sensors could be used to monitor endogenous signaling pathways, as demonstrated by their ability to differentially interfere with TNF- and IL-1-induced NF-κB pathway. We propose that UBD-based biosensors could serve as prototypes to track and trace other chain types and ubiquitin-like signals in?vivo.  相似文献   

2.
Nicotianamine forms complexes with Zn(II) in vivo   总被引:2,自引:0,他引:2  
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.  相似文献   

3.
The human beta-secretase, BACE, plays a key role in the generation of pathogenic amyloid beta-peptide (Abeta) in Alzheimer's disease and has been identified as an ideal target for therapy. Previous studies reported the monitoring of BACE activity in vitro utilizing chemical synthesized sensors. Here we describe the first genetically encoded FRET probe that can detect BACE activity in vivo. The FRET probe was constructed with the BACE substrate site (BSS) and two mutated green fluorescent proteins. In living cell, the FRET probe was directed to the secretory pathway and anchored on the cell surface to measure BACE enzymatic activity. The results show that the FRET probe can be cleaved by BACE effectively in vivo, suggesting that the probe can be used for real-time monitoring of BACE activity. This assay provides a novel platform for BACE inhibitor screening in vivo.  相似文献   

4.
Ryu JH  Lee A  Na JH  Lee S  Ahn HJ  Park JW  Ahn CH  Kim BS  Kwon IC  Choi K  Youn I  Kim K 《Amino acids》2011,41(5):1113-1122
Among the classical collagenases, matrix metalloproteinase-13 (called MMP-13, collagenase-3) is one of the most important components for cartilage destruction of osteoarthritis (OA) developments. Despite many efforts, the detection methods of MMP-13 activity have been met with limited success in vivo, in part, due to the low sensitivity and low selectivity by homology of MMP family. Previously, we demonstrated the use of strongly dark-quenched fluorogenic probe allowed for the visual detection of MMP-13 in vitro and in OA-induced rat models. In this study, we described the optimization of MMP-13 fluorogenic probe for OA detection in vivo. Three candidate probes demonstrated recovered fluorescent intensity proportional with MMP-13 concentrations, respectively; however, Probe 2 exhibited both high signal amplification and selective recognition for MMP-13, not MMP-2 and MMP-9 in vitro. When Probe 2 was applied to OA-induced rat models, clear visualization of MMP-13 activity in OA-induced cartilage was obtained. Optimized MMP-13 fluorogenic probe can be applied to detect and image OA and have potential for evaluating the in vivo efficacy of MMP-13 inhibitors which are being tested for therapeutic treatment of OA.  相似文献   

5.
The lipophilic fluorescent probe trimethylaminodiphenylhexatriene (TMA-DPH), previously used as a plasma membrane marker in membrane fluidity and exocytosis studies, was shown, to monitor the plasma-membrane internalization-recycling shuttle movement in cells. Using this approach we present here kinetic and dose-response data, which give evidence that the plasma membrane flow is enhanced in bone marrow macrophages from various mouse strains, upon in vitro activation with gamma interferon (IFN-gamma) or bacterial lipopolysaccharide (LPS), within physiological dose ranges. The effect studied evolved in line with the usual development kinetics of macrophage activation. Complementary assays on membrane fluidity, surface charge density and membrane surface indicated no related changes. From these experiments it is concluded that the observed enhancement of the plasma membrane traffic does not originate from specific limited membrane modifications, but is merely a particular feature of the overall macrophage activation.  相似文献   

6.
An aptamer-molecular beacon (MB) multiple fluorescent probe for adenosine triphosphate (ATP) assay is proposed in this article. The ATP aptamer was used as a molecular recognition part, and an oligonucleotide (short strand, SS) partially complementary with the aptamer and an MB was used as the other part. In the presence of ATP, the aptamer bound with it, accompanied by the hybridization of MB and SS and the fluorescence recovering. Wherever there is only very weak fluorescence can be measured in the absence of ATP. Based on the relationship of recovering fluorescence and the concentration of ATP, a method for quantifying ATP has been developed. The fluorescence intensity was proportional to the concentration of ATP in the range of 10 to 500 nM with a detection limit of 0.1 nM. Moreover, this method was able to detect ATP with high selectivity in the presence of guanosine triphosphate (GTP), cytidine triphosphate (CTP), and uridine triphosphate (UTP). This method is proved to be simple with high sensitivity, selectivity, and specificity.  相似文献   

7.
GFP and luciferase are used extensively as markers both in vitro and in vivo although both have limitations. The utility of GFP fluorescence is restricted by high background signal and poor tissue penetrance. Luciferase throughput is limited in vitro by the requirement for cell lysis, while in vivo, luciferase readout is complicated by the need for substrate injection and the dependence on endogenous ATP. Here we show that near-infrared fluorescent protein in combination with widely available near-infrared scanners overcomes these obstacles and allows for the accurate determination of cell number in vitro and tumor growth in vivo in a high-throughput manner and at negligible per-well costs. This system represents a significant advance in tracking cell proliferation in tissue culture as well as in animals, with widespread applications in cell biology.  相似文献   

8.
9.
The mitogen-activated protein kinases are key regulators of cellular organization and function. To understand the mechanisms(s) by which these ubiquitous kinases affect specific cellular changes, it is necessary to identify their diverse and numerous substrates in different cell contexts and compartments. As a first step in achieving this goal, we engineered a mutant ERK2 in which a bulky amino acid residue in the ATP binding site (glutamine 103) is changed to glycine, allowing this mutant to utilize an analog of ATP (cyclopentyl ATP) that cannot be used by wild-type ERK2 or other cellular kinases. The mutation did not inhibit ERK2 kinase activity or substrate specificity in vitro or in vivo. This method allowed us to detect only ERK2-specific phosphorylations within a mixture of proteins. Using this ERK2 mutant/analog pair to phosphorylate ERK2-associated proteins in COS-1 cells, we identified the ubiquitin ligase EDD (E3 identified by differential display) and the nucleoporin Tpr (translocated promoter region) as two novel substrates of ERK2, in addition to the known ERK2 substrate Rsk1. To further validate the method, we present data that confirm that ERK2 phosphorylates EDD in vitro and in vivo. These results not only identify two novel ERK2 substrates but also provide a framework for the future identification of numerous cellular targets of this important signaling cascade.  相似文献   

10.
The fate of the proteasome-generated peptides depends upon the cytosolic peptidases whose activities ought to be regulated. One of the most important oligopeptide-degrading and -binding proteins in the cytosol is the thimet oligopeptidase (EC 3.4.24.15), ubiquitously found in mammalian tissues. To date, there is no indication whether thimet oligopeptidase activities are physiologically regulated. Here, we present evidences suggesting that the concentration of unbound ATP in the cytosol regulates the thimet oligopeptidase activities both, in vitro and ex vivo. To perform these studies two oligopeptides were used: a quenched fluorescent peptide, which is susceptible to thimet oligopeptidase degradation, and the ovalbumin257-264 (MHC class I ovalbumin epitope), which displays high affinity to the thimet oligopeptidase without being degraded. We also showed that the thimet oligopeptidase undergoes autophosphorylation by ATP, a modification that does not affect the peptidase activity. The autophosphorylation is abolished in the presence of the thimet oligopeptidase substrates, as well as by the effect of a site directed inhibitor of this enzyme, and by the substitution of Glu474 for Asp at the metallo-peptidase motif. Altogether, the results presented here suggest that Zn2+ at the active center of the thimet oligopeptidase is the target for the ATP binding, leading to the inhibition of the enzyme activity, and inducing autophosphorylation. These effects, which depend upon the concentration of the unbound ATP, may help to explain the fate of the proteasomal-generated oligopeptides in the cytosol.  相似文献   

11.

Background

Although microcalcifications of hydroxyapatite can be found in both benign and malignant osteotropic tumors, they are mostly seen in proliferative lesions, including carcinoma. The aim of this present study is to develop a molecular imaging contrast agent for selective identification of hydroxyapatite calcification in human osteotropic tumor tissues ex vivo and in human osteosarcoma cells in vitro.

Methods

A bioinspired biomarker, hydroxyapatite binding peptide (HABP), was designed to mimic natural protein osteocalcin property in vivo. A fluorescein isothiocyanate dye conjugated HABP (HABP-19) was utilized to characterize hydroxyapatite on human osteotropic tumor tissue sections ex vivo and to selectively image hydroxyapatite calcifications in human osteosarcoma cells in vitro.

Results

Using a HABP-19 molecular imaging probe, we have shown that it is possible to selectively image hydroxyapatite calcifications in osteotropic cancers ex vivo and in human SaOS-2 osteosarcoma cells in vitro.

Conclusion

Hydroxyapatite calcifications were selectively detected in osteotropic tissues ex vivo and in the early stage of the calcification process of SaOS-2 human osteosarcoma in vitro using our HABP-19 molecular imaging probe. This new target-selective molecular imaging probe makes it possible to study the earliest events associated with hydroxyapatite deposition in various osteotropic cancers at the cellular and molecular levels.

General significance

It potentially could be used to diagnose and treat osteotropic cancer or to anchor therapeutic agents directing the local distribution of desired therapy at calcified sites.  相似文献   

12.
Targeted molecular imaging to detect changes in the structural and functional organization of tissues, at the molecular level, is a promising approach for effective and early diagnosis of diseases. Quantitative and qualitative changes in type I collagen, which is a major component in the extra cellular matrix (ECM) of skin and other vital organs like lung, liver, heart and kidneys, are often associated with the pathophysiology of these organs. We have synthesized a fluorescent probe that comprises collagelin, a specific collagen binding peptide, coupled to fluorescent porphyrin that can effectively detect abnormal deposition of collagen in live tissues by emitting fluorescence in the near infra red (NIR) region. In this report we have presented the methodology for coupling of 5-(4-carboxy phenyl)-10, 15, 20-triphenyl porphyrin (C-TPP) to the N-terminal of collagelin or to another mutant peptide (used as a control). We have evaluated the efficacy of these fluorescent peptides to detect collagen deposition in live normal and abnormal tissues. Our results strongly suggest that porphyrin-tagged collagelin can be used as an effective probe for the non invasive in vivo detection of tissue fibrosis, especially in the liver.  相似文献   

13.
In vivo optical imaging to enhance the detection of cancer during endoscopy or surgery requires a targeted fluorescent probe with high emission efficiency and high signal-to-background ratio. One strategy to accurately detect cancers is to have the fluorophore internalize within the cancer cells permitting nonbound fluorophores to be washed away or absorbed. The choice of fluorophores for this task must be carefully considered. For depth of penetration, near-infrared probes are ordinarily preferred but suffer from relatively low quantum efficiency. Although green fluorescent protein has been widely used to image tumors on internal organs in mice, green fluorescent probes are better suited for imaging the superficial tissues because of the short penetration distance of green light in tissue and the highly efficient production of signal. While the fluorescence properties of green fluorophores are well-known in vitro, less attention has been paid to their fluorescence once they are internalized within cells. In this study, the emission efficiency after cellular internalization of four common green fluorophores conjugated to avidin (Av-fluorescein, Av-Oregon green, Av-BODIPY-FL, and Av-rhodamine green) were compared after each conjugate was incubated with SHIN3 ovarian cancer cells. Using the lectin binding receptor system, the avidin-fluorophore conjugates were endocytosed, and their fluorescence was evaluated with fluorescence microscopy and flow cytometry. While fluorescein demonstrated the highest signal outside the cell, among the four fluorophores, internalized Av-rhodamine green emitted the most light from SHIN3 ovarian cancer cells both in vitro and in vivo. The internalized Av-rhodamine green complex appeared to localize to the endoplasmic vesicles. Thus, among the four common green fluorescent dyes, rhodamine green is the brightest green fluorescence probe after cellular internalization. This information could have implications for the design of tumor-targeted fluorescent probes that rely on cellular internalization for cancer detection.  相似文献   

14.
Loop L5 of kinesin is located near the ATPase site, in common with kinesins of various animal species. The rice plant-specific kinesin K16 also has a corresponding loop that is slightly shorter than that of mouse brain kinesin. The present study was designed to monitor conformational changes in loop L5 during ATP hydrolysis. For this purpose, we introduced one reactive cysteine into the L5 of rice kinesin and modified it with fluorescent probes. The cysteine in L5 was labeled with a fluorescent probe 2-(4'(iodoacetamide) anilino-naphthalene-6-sulfonic acid sodium salt) [IAANS]. IAANS was incorporated into L5 at an almost equimolar ratio in the absence of nucleotides. In contrast, the incorporated amount was reduced to 0.62 and 0.32 mol IAANS/mol motor domain in the presence of ATP and ADP, respectively. Upon nucleotide addition, the fluorescent intensity of IAANS incorporated into L5 was significantly reduced to 63% and 51% for ATP and ADP, respectively. These results suggest that L5 of rice kinesin significantly changes its conformation during ATP hydrolysis.  相似文献   

15.
The fluorescent cytosine analog tC(O) is on average the brightest probe of its kind and, moreover, it introduces minimal perturbations to the normal secondary structure of DNA. Here several ways of how tC(O), with an advantage, can be used as a local fluorescent probe in nucleic acid systems are presented. Most importantly, we show that tC(O) is an excellent probe for the detection of individual melting processes of complex nucleic acid structures containing a large number of separate secondary structure motifs. Since conventional UV-melting investigations merely monitor the global melting process of the whole nucleic acid structure, e.g. multi-hairpin systems in RNA/DNA, and thus is incapable of estimating individual melting transitions of such systems, tC(O) represents a new method of characterization. Furthermore, we find that tC(O) may be used to detect bulges and loops in nucleic acids as well as to distinguish a matched base-pair from several of the mismatched.  相似文献   

16.
Fibroblast activation protein-alpha (FAPα) is a cell surface glycoprotein which is selectively expressed by tumor-associated fibroblasts in malignant tumors but rarely on normal tissues. FAPα has also been reported to promote tumor growth and invasion and therefore has been of increasing interest as a promising target for designing tumor-targeted drugs and imaging agents. Although medicinal study on FAPα inhibitors has led to the discovery of many FAPα-targeting inhibitors including a drug candidate in a phase II clinical trial, the development of imaging probes to monitor the expression and activity of FAPα in vivo has largely lagged behind. Herein, we report an activatable near-infrared (NIR) fluorescent probe (ANP(FAP)) for in vivo optical imaging of FAPα. The ANP(FAP) consists of a NIR dye (Cy5.5) and a quencher dye (QSY21) which are linked together by a short peptide sequence (KGPGPNQC) specific for FAPα cleavage. Because of the efficient fluorescence resonance energy transfer (FRET) between Cy5.5 and QSY21 in ANP(FAP), high contrast on the NIR fluorescence signal can be achieved after the cleavage of the peptide sequence by FAPα both in vitro and in vivo. In vitro assay on ANP(FAP) indicated the specificity of the probe to FAPα. The in vivo optical imaging using ANP(FAP) showed fast tumor uptake as well as high tumor to background contrast on U87MG tumor models with FAPα expression, while much lower signal and tumor contrast were observed in the C6 tumor without FAPα expression, demonstrating the in vivo targeting specificity of the ANP(FAP). Ex vivo imaging also demonstrated ANP(FAP) had high tumor uptake at 4 h post injection. Collectively, these results indicated that ANP(FAP) could serve as a useful NIR optical probe for early detection of FAPα expressing tumors.  相似文献   

17.
Quinacrine, a fluorescent amphipathic amine, has been used as a vital fluorescent probe to visualize vesicular storage of ATP in the field of purinergic signaling. However, the mechanism(s) by which quinacrine represents vesicular ATP storage remains to be clarified. The present study investigated the validity of the use of quinacrine as a vial fluorescent probe for ATP-storing organelles. Vesicular nucleotide transporter (VNUT), an essential component for vesicular storage and ATP release, is present in very low density lipoprotein (VLDL)-containing secretory vesicles in hepatocytes. VNUT gene knockout (Vnut−/−) or clodronate treatment, a VNUT inhibitor, disappeared vesicular ATP release (Tatsushima et al., Biochim Biophys Acta Molecular Basis of Disease 2021, e166013). Upon incubation of mice’s primary hepatocytes, quinacrine accumulates in a granular pattern into the cytoplasm, sensitive to 0.1-μM bafilomycin A1, a vacuolar ATPase (V-ATPase) inhibitor. Neither Vnut−/− nor treatment of clodronate affected quinacrine granular accumulation. In vitro, quinacrine is accumulated into liposomes upon imposing inside acidic transmembranous pH gradient (∆pH) irrespective of the presence or absence of ATP. Neither ATP binding on VNUT nor VNUT-mediated uptake of ATP was affected by quinacrine. Consistently, VNUT-mediated uptake of quinacrine was negligible or under the detection limit. From these results, it is concluded that vesicular quinacrine accumulation is not due to a consequence of its interaction with ATP but due to ∆pH-driven concentration across the membranes as an amphipathic amine. Thus, quinacrine is not a vital fluorescent probe for vesicular ATP storage.  相似文献   

18.
Fluorescence imaging of nitric oxide (NO) in vitro and in vivo is essential to developing our understanding of the role of nitric oxide in biology and medicine. Current probes such as diaminofluorescein depend on reactions with oxidized NO products, but not with nitric oxide directly, and this limits their applicability. Here we report the formation of an imaging probe for nitric oxide by coordinating the highly fluorescent chemical 4-methoxy-2-(1H-naphtho[2,3-d]imidazol-2-yl)phenol (MNIP) with Cu(II). The coordination compound MNIP-Cu reacts rapidly and specifically with nitric oxide to generate a product with blue fluorescence that can be used in vitro and in vivo. In the present study MNIP-Cu was used to reveal nitric oxide produced by inducible nitric oxide synthase in lipopolysaccharide (LPS)-activated macrophages (Raw 264.7 cells) and by endothelial nitric oxide synthase in endothelial cells (HUVEC). MNIP-Cu was also used to evaluate the distribution of nitric oxide synthesis in a model of acute liver injury induced by LPS and d-galactosamine in mice. The results demonstrate that MNIP-Cu can act as a novel fluorescent probe for nitric oxide and has many potential applications in biomedical research.  相似文献   

19.
Dendrimer-based targeted delivery of an apoptotic sensor in cancer cells   总被引:1,自引:0,他引:1  
Our previous studies have demonstrated the applicability of poly(amidoamine) (PAMAM) dendrimers as a platform for the targeted delivery of chemotherapeutic drugs both in vitro and in vivo. To monitor the rate and extent of cell-killing caused by the delivered chemotherapeutic drug, we wished to analyze the degree of apoptosis in targeted cells on a real-time basis. As the apoptosis-regulating caspases are activated during the apoptotic process, several caspase-hydrolyzable, fluorescence resonance energy transfer (FRET)-based substrates have been marketed for the detection of apoptosis. However, the applicability of these agents is limited because of their nonspecificity and the consequent high background fluorescence in tissues. Here we show the synthesis, characterization, and in vitro targeting of an engineered PAMAM nanodevice in which folic acid (FA) is conjugated as the targeting molecule and a caspase-specific FRET-based agent (PhiPhiLux G1D2) is conjugated as the apoptosis-detecting agent. This conjugate specifically targets FA-receptor-positive, KB cells. In these cells, the apoptosis-inducing agent staurosporine caused a 5-fold increase in the cellular fluorescence. These results show, for the first time, the potential applicability of a targeted apoptosis-measuring nanodevice, which could be used for simultaneously monitoring the apoptotic potential of a delivered drug.  相似文献   

20.
The determination of hormone‐binding sites in plants is essential in understanding the mechanisms behind hormone function. Salicylic acid (SA) is an important plant hormone that regulates responses to biotic and abiotic stresses. In order to label SA‐binding sites in plant tissues, a quantum dots (QDs) probe functionalized with a SA moiety was successfully synthesized by coupling CdSe QDs capped with 3‐mercaptopropionic acid (MPA) to 4‐amino‐2‐hydroxybenzoic acid (PAS), using 1‐ethyl‐3‐(3‐dimethyllaminopropyl) carbodiimide (EDC) as the coupling agent. The probe was then characterized by dynamic light scattering and transmission electron microscopy, as well as UV/vis and fluorescence spectrophotometry. The results confirmed the successful conjugation of PAS to CdSe QDs and revealed that the conjugates maintained the properties of the original QDs, with small core diameters and adequate dispersal in solution. The PAS–CdSe QDs were used to detect SA‐binding sites in mung bean and Arabidopsis thaliana seedlings in vitro and in vivo. The PAS–CdSe QDs were effectively transported into plant tissues and specifically bound to SA receptors in vivo. In addition, the effects of the PAS–CdSe QDs on cytosolic Ca2+ levels in the tips of A. thaliana seedlings were investigated. Both SA and PAS–CdSe QDs had similar effects on the trend in cytosolic‐free Ca2+ concentrations, suggesting that the PAS–CdSe QDs maintained the bioactivity of SA. To summarize, PAS–CdSe QDs have high potential as a fluorescent probe for the in vitro/in vivo labeling and imaging of SA receptors in plants. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号