首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
K Meyer  A Petersen  M Niepmann    E Beck 《Journal of virology》1995,69(5):2819-2824
We studied the interaction of cellular proteins with the internal ribosome entry site (IRES) of foot-and-mouth disease virus by UV cross-linking and observed specific binding of a 80-kDa protein contained in cytosolic HeLa cell extract and in rabbit reticulocyte lysate. Binding of the protein was dependent on the presence of ATP. Immunoprecipitation with eIF-4B antiserum revealed that the protein is identical to the initiation factor eIF-4B. Deletions in the 3' part, but not in the 5' part, of the IRES interfered with UV cross-linking, indicating that the binding site of eIF-4B is located close to the end of the element. Attempts to separate ribosome-associated from non-ribosome-associated protein fractions of cytosolic cell extracts led to the loss of cross-linking activity. This finding suggests that additional protein factors contribute to this interaction of eIF-4B with the IRES of foot-and-mouth disease virus.  相似文献   

2.
Initiation factor eIF-4D functions late in the initiation pathway, apparently during formation of the first peptide bond. The factor is post-translationally modified at a specific lysine residue by reaction with spermidine and subsequent hydroxylation to form hypusine. A precursor form lacking hypusine is inactive in the assay for methionyl-puromycin synthesis, but activity is restored following in vitro modification to deoxyhypusine, thereby suggesting that the modification is essential for function. Since formylated methionyl-tRNA is less dependent on eIF-4D in the puromycin assay, we postulate that eIF-4D and its hypusine modification may stabilize charged Met-tRNA binding to the peptidyl transferase center of the 60S ribosomal subunit. Analysis of eIF-4D genes in yeast indicate that eIF-4D and its hypusine modification are essential for cell growth.  相似文献   

3.
4.
We studied the mRNA-binding properties of eukaryotic initiation factor (eIF) 2. This Met-tRNA-binding factor interacts with the cap structure of reoviral mRNA in an ATP-independent manner. Both the beta- and gamma-subunit of eIF-2 are involved in the UV-induced cross-linking of eIF-2 to the cap. The interaction of eIF-2 with a messenger is sensitive to the cap analogue 7-methyl-guanosine 5'-triphosphate as measured by cross-linking and by mRNA retention on nitrocellulose filters. The cap-binding property of eIF-2 does not conflict with the current mRNA-binding model of initiation factors eIF-4A, -4B, and -4F: cross-linking of eIF-4E and of eIF-4B is stimulated by eIF-2. The eIF-2-mediated increase of eIF-4E interaction results in a decrease of the cross-linking of the beta- and gamma-subunits of eIF-2. The presence of GTP in the cross-linking assay interferes with the interaction of eIF-2 with the cap structure but does not inhibit the eIF-2 stimulated eIF-4E and -4B cross-linking. These observations indicate a role for eIF-2 in the mRNA recognition.  相似文献   

5.
The mechanism by which internal ribosomal binding on the picornaviral RNA takes place is still not known. An important role has been suggested for eukaryotic initiation factors eIF-4A, eIF-4B, as well as for some not yet defined trans-acting factors like p52 for poliovirus and p58 for encephalomyocarditis virus (EMCV). In this paper we describe the competition between the 5' untranslated region (UTR) of EMCV and globin mRNA for the translational apparatus in rabbit reticulocyte lysates and show that the factor that is competed for is eIF-2/2B. The EMC 5' UTR is a very strong inhibitor of globin synthesis in the rabbit reticulocyte lysate because of a 30-fold higher eIF-2/2B binding capacity. Mutations 100 to 140 nucleotides upstream of the initiation codon led to a decreased efficiency to initiate translation and to a decreased ability to inhibit globin mRNA translation. The results suggest an important role for eIF-2/2B binding in EMC RNA translation and therefore in internal initiation.  相似文献   

6.
The Saccharomyces cerevisiae TIF3 gene encodes the yeast homologue of mammalian translation initiation factor eIF-4B. We have added six histidine residues to the C-terminus of Tif3 protein (Tif3-His6p) and purified the tagged protein by affinity chromatography. Tif3-His6p stimulates translation and mRNA binding to ribosomes in a Tif3-dependent in vitro system. Furthermore, it binds to single-stranded RNA and catalyses the annealing of partially complementary RNA strands in vitro. In parallel experiments, RNA annealing activity could also be demonstrated for mammalian eIF-4B. A role for Tif3/eIF-4B and RNA annealing activity in the scanning process is proposed.  相似文献   

7.
Eukaryotic translation initiation factor 4E (eIF-4E), which possesses cap-binding activity, functions in the recruitment of mRNA to polysomes as part of a three-subunit complex, eIF-4F (cap-binding complex). eIF-4E is the least abundant of all translation initiation factors and a target of growth regulatory pathways. Recently, two human cDNAs encoding novel eIF-4E-binding proteins (4E-BPs) which function as repressors of cap-dependent translation have been cloned. Their interaction with eIF-4E is negatively regulated by phosphorylation in response to cell treatment with insulin or growth factors. The present study aimed to characterize the molecular interactions between eIF-4E and the other subunits of eIF-4F and to similarly characterize the molecular interactions between eIF-4E and the 4E-BPs. A 49-amino-acid region of eIF-4 gamma, located in the N-terminal side of the site of cleavage by Picornaviridae protease 2A, was found to be sufficient for interacting with eIF-4E. Analysis of deletion mutants in this region led to the identification of a 12-amino-acid sequence conserved between mammals and Saccharomyces cerevisiae that is critical for the interaction with eIF-4E. A similar motif is found in the amino acid sequence of the 4E-BPs, and point mutations in this motif abolish the interaction with eIF-4E. These results shed light on the mechanisms of eIF-4F assembly and on the translational regulation by insulin and growth factors.  相似文献   

8.
9.
Eukaryotic translation initiation factor-4A (eIF-4A) plays a critical role in binding of eukaryotic mRNAs to ribosomes. It has been biochemically characterized as an RNA-dependent ATPase and RNA helicase and is a prototype for a growing family of putative RNA helicases termed the DEAD box family. It is required for mRNA-ribosome binding both in its free form and as a subunit of the cap binding protein complex, eIF-4F. To gain further understanding into the mechanism of action of eIF-4A in mRNA-ribosome binding, defective eIF-4A mutants were tested for their abilities to function in a dominant negative manner in a rabbit reticulocyte translation system. Several mutants were demonstrated to be potent inhibitors of translation. Addition of mutant eIF-4A to a rabbit reticulocyte translation system strongly inhibited translation of all mRNAs studied including those translated by a cap-independent internal initiation mechanism. Addition of eIF-4A or eIF-4F relieved inhibition of translation, but eIF-4F was six times more effective than eIF-4A, whereas eIF-4B or other translation factors failed to relieve the inhibition. Kinetic experiments demonstrated that mutant eIF-4A is defective in recycling through eIF-4F, thus explaining the dramatic inhibition of translation. Mutant eIF-4A proteins also inhibited eIF-4F-dependent, but not eIF-4A-dependent RNA helicase activity. Taken together these results suggest that eIF-4A functions primarily as a subunit of eIF-4F, and that singular eIF-4A is required to recycle through the complex during translation. Surprisingly, eIF-4F, which binds to the cap structure, appears to be also required for the translation of naturally uncapped mRNAs.  相似文献   

10.
A pollen-specific sequence, NeIF-4A8, has been isolated from a cDNA library from mature pollen of Nicotiana tabacum cv. Samsun. NeIF-4A8 is a full-length cDNA whose deduced amino acid sequence exhibits high homology to the eucaryotic translation initiation factor eIF-4A from mouse, Drosophila and tobacco. eIF-4A is an RNA helicase which belongs to the supergene family of DEAD-box proteins. Northern blot analysis with a gene-specific probe showed strict anther-specific expression of NeIF-4A8 starting at microspore mitosis. With antibodies raised against tobacco eIF-4A the presence of abundant eIF-4A-related proteins in developing anthers and pollen grains was demonstrated. The genomic analysis shows that the coding region is split by three introns whereas a large, fourth intron is situated in the 5-untranslated region. A promoter construct with 2137 bp of upstream sequence fused to the GUS reporter gene was used to confirm that the expression is confined to the haploid cells within the anther. NeIF-4A8 is a prime candidate for mediating translational control in the developing male gametophyte.  相似文献   

11.
We identified and mapped RNA-binding sites of yeast Saccharomyces cerevisiae translation initiation factor eIF4G1 and examined their importance for eIF4G1 function in vitro and in vivo. Yeast eIF4G1 binds to single-stranded RNA with three different sites, the regions of amino acids 1-82 (N terminus), 492-539 (middle), and 883-952 (C terminus). The middle and C-terminal RNA-binding sites represent RS (arginine and serine)-rich domains; the N-terminal site is asparagine-, glutamine- and glycine-rich. The three RNA-binding sites have similar affinity for single-stranded RNA, whereas the affinity for single-stranded RNA full-length eIF4G1 is about 100-fold higher (approximate K(d) of 5 x 10(-8) M). Replacement of the arginine residues in the middle RS site by alanine residues abolishes its RNA-binding activity. Deletion of individual RNA-binding sites shows that eIF4G1 molecules lacking one binding site are still active in supporting growth of yeast cells and translation in vitro, whereas eIF4G1 molecules lacking two or all three RNA-binding sites are strongly impaired or inactive. These data suggest that RNA-binding activity is required for eIF4G1 function.  相似文献   

12.
13.
Three cDNA clones coding for eukaryotic translation initiation factor 4A, eIF-4A, were isolated from a Nicotiana plumbaginifolia root cDNA library by heterologous screening. The clones comprise two distinct gene classes as two clones are highly similar while the third is divergent. The genes belong to a highly conserved gene family, the DEAD box supergene family, although the divergent clone contains a DESD box rather than the characteristic DEAD box. The two clones are representatives of separate small multigene families in both N. plumbaginifolia and N. tabacum. Representatives of each family are coordinately expressed in all plant organs examined. The 47 kD polypeptide product of one clone, overexpressed in E. coli, crossreacts immunologically with a rabbit reticulocyte eIF-4A polyclonal antibody. Taken together the data suggest that the two Nicotiana eIF-4A genes encode translation initiation factors. The sequence divergence and the coordinate expression of the two Nicotiana eIF-4A families provide an excellent system to determine if functionally distinct eIF-4A polypeptides are required for translation initiation in plants.  相似文献   

14.
Ribosome binding to mRNA requires the concerted action of three initiation factors, eIF-4A, eIF-4B, and eIF-4F, and the hydrolysis of ATP in a mechanism that is not well understood. Several lines of evidence support a model by which these factors bind to the 5' end of mRNA and unwind proximal secondary structure, thus allowing 40S ribosomal subunits to bind. We have previously used an unwinding assay to demonstrate that eIF-4A or eIF-4F in combination with eIF-4B functions as an RNA helicase. To elucidate the molecular mechanism of RNA unwinding, we used a mobility shift electrophoresis assay which allows the simultaneous analysis of unwinding and complex formation between these factors and RNA. eIF-4F forms a stable complex (complex A) with duplex RNA in the absence of ATP. Addition of eIF-4B results in the formation of a second complex (complex B) of slower mobility in the gel. In the presence of ATP, both complexes dissociate, concomitant with the unwinding of the duplex RNA. We present evidence to suggest that unwinding occurs in a processive as opposed to distributive manner. Thus, we conclude that helicase complexes that are formed in the absence of ATP on duplex RNA translocate processively along the RNA in an ATP-dependent reaction and melt secondary structure. These helicase complexes therefore represent intermediates in the unwinding process of mRNA that could precede ribosome binding.  相似文献   

15.
16.
Eukaryotic protein synthesis initiation factor (eIF) 4 gamma, also known as p220, is a component of the protein complex eIF-4, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome. Peptide sequence data from rabbit reticulocyte eIF-4 gamma was used to synthesize oligonucleotide probes and polymerase chain reaction primers. These were used to screen lambda-cDNA libraries from rabbit and human brain, yielding a partial rabbit and a complete human cDNA sequence of 5.1 kilobases. Northern blot and primer extension analysis indicated that the cDNA sequence was complete. To confirm that the cDNA represented that of eIF-4 gamma, three peptides were synthesized based on cDNA sequences and used to produce anti-peptide antibodies. The antibodies specifically recognized intact eIF-4 gamma and its cleavage products following poliovirus infection. The eIF-4 gamma mRNA contains AUG codons at nucleotides 6, 67, 90, 165, and 369, but only the last is followed by a long open reading frame. The eIF-4 gamma polypeptide is 154 kDa (1396 amino acid residues) and contains sequence motifs of potential interest: a sequence (AGLGPR) that is similar to the substrate recognition sequence of protease 2A from rhinovirus serotype 14, five PEST regions with scores greater than 10, which are characteristic of rapidly degraded proteins, stretches of polyglutamic acid, and numerous potential phosphorylation sites.  相似文献   

17.
18.
19.
Translation initiation of the viral genomic mRNA (vRNA) of human immunodeficiency virus-type 1 (HIV-1) can be mediated by a cap- or an internal ribosome entry site (IRES)-dependent mechanism. A previous report shows that Staufen1, a cellular double-stranded (ds) RNA-binding protein (RBP), binds to the 5’untranslated region (5′UTR) of the HIV-1 vRNA and promotes its cap-dependent translation. In this study, we now evaluate the role of Staufen1 as an HIV-1 IRES-transacting factor (ITAF). We first confirm that Staufen1 associates with both the HIV-1 vRNA and the Gag protein during HIV-1 replication. We found that in HIV-1-expressing cells, siRNA-mediated depletion of Staufen1 reduces HIV-1 vRNA translation. Using dual-luciferase bicistronic mRNAs, we show that the siRNA-mediated depletion and cDNA-mediated overexpression of Staufen1 acutely regulates HIV-1 IRES activity. Furthermore, we show that Staufen1-vRNA interaction is required for the enhancement of HIV-1 IRES activity. Interestingly, we find that only Staufen1 harboring an intact dsRNA-binding domain 3 (dsRBD3) rescues HIV-1 IRES activity in Staufen1 CRISPR-Cas9 gene edited cells. Finally, we show that the expression of Staufen1-dsRBD3 alone enhances HIV-1 IRES activity. This study provides evidence of a novel role for Staufen1 as an ITAF promoting HIV-1 vRNA IRES activity.  相似文献   

20.
Computer-assisted analysis of amino acid sequences using methods for database screening with individual sequences and with multiple alignment blocks reveals a complex multidomain organization of yeast proteins GCD6 and GCD1, and mammalian homolog of GCD6-subunits of the eukaryotic translation initiation factor eIF-2B involved in GDP/GTP exchange on eIF-2. It is shown that these proteins contain a putative nucleotide-binding domain related to a variety of nucleotidyltransferases, most of which are involved in nucleoside diphosphate-sugar formation in bacteria. Three conserved motifs, one of which appears to be a variant of the phosphate-binding site (P-loop) and another that may be considered a specific version of the Mg(2+)-binding site of NTP-utilizing enzymes, were identified in the nucleotidyltransferase-related domain. Together with the third unique motif adjacent to the the P-loop, these motifs comprise the signature of a new superfamily of nucleotide-binding domains. A domain consisting of hexapeptide amino acid repeats with a periodic distribution of bulky hydrophobic residues (isoleucine patch), which previously have been identified in bacterial acetyltransferases, is located toward the C-terminus from the nucleotidyltransferase-related domain. Finally, at the very C-termini of GCD6, eIF-2B epsilon, and two other eukaryotic translation initiation factors, eIF-4 gamma and eIF-5, there is a previously undetected, conserved domain. It is hypothesized that the nucleotidyltransferase-related domain is directly involved in the GDP/GTP exchange, whereas the C-terminal conserved domain may be involved in the interaction of eIF-2B, eIF-4 gamma, and eIF-5 with eIF-2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号