首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doering T  Proia RL  Sandhoff K 《FEBS letters》1999,447(2-3):167-170
The epidermal permeability barrier for water is essentially maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the main components of these membranes, derive in large part from hydrolysis of glucosylceramides mediated by the lysosomal enzyme beta-glucocerebrosidase. As analyzed in this work, the beta-glucocerebrosidase deficiency in type 2 Gaucher mice (RecNci I) resulted in an accumulation of all epidermal glucosylceramide species accompanied with a decrease of the related ceramides. However, the levels of one ceramide subtype, which possesses an alpha-hydroxypalmitic acid, was not altered in RecNci I mice suggesting that the beta-glucocerebrosidase pathway is not required for targeting of this lipid to interstices of the stratum corneum. Most importantly, omega-hydroxylated glucosylceramides which are protein-bound to the epidermal cornified cell envelope of the transgenic mice accumulated up to 35-fold whereas levels of related protein-bound ceramides and fatty acids were decreased to 10% of normal control. These data support the hypothesis that in wild-type epidermis omega-hydroxylated glucosylceramides are first transferred enzymatically from their linoleic esters to proteins of the epidermal cornified cell envelope and then catabolized to protein-bound ceramides and fatty acids, thus contributing at least in part to the formation of the lipid-bound envelope.  相似文献   

2.
The epidermal permeability barrier of mammalian skin is localized in the stratum corneum. Corneocytes are embedded in an extracellular, highly ordered lipid matrix of hydrophobic lipids consisting of about 50% ceramides, 25% cholesterol and 15% long and very long chain fatty acids. The most important lipids for the epidermal barrier are ceramides. The scaffold of the lipid matrix is built of acylceramides, containing ω-hydroxylated very long chain fatty acids, acylated at the ω-position with linoleic acid. After glucosylation of the acylceramides at Golgi membranes and secretion, the linoleic acid residues are replaced by glutamate residues originating from proteins exposed on the surface of corneocytes. Removal of their glucosyl residues generates a hydrophobic surface on the corneocytes used as a template for the formation of extracellular lipid layers of the water permeability barrier. Misregulation or defects in the formation of extracellular ceramide structures disturb barrier function. Important anabolic steps are the synthesis of ultra long chain fatty acids, their ω-hydroxylation, and formation of ultra long chain ceramides and glucosylceramides. The main probarrier precursor lipids, glucosylceramides and sphingomyelins, are packed in lamellar bodies together with hydrolytic enzymes such as glucosylceramide-β-glucosidase and acid sphingomyelinase and secreted into the intercelullar space between the stratum corneum and stratum granulosum. Inherited defects in the extracellular hydrolytic processing of the probarrier acylglucosylceramides impair epidermal barrier formation and cause fatal diseases: such as prosaposin deficiency resulting in lack of lysosomal lipid binding and transfer proteins, or the symptomatic clinical picture of the “collodion baby” in the absence of glucocerebrosidase. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

3.
The barrier function of skin ultimately depends on the physical state and structural organisation of the stratum corneum extracellular lipid matrix. Ceramides, cholesterol and a broad distribution of saturated long-chain free fatty acids dominate the stratum corneum lipid composition. Additionally, smaller amounts of cholesterol sulfate and cholesteryl oleate may be present. A key feature determining skin barrier capacity is thought to be whether or not different lipid domains coexist laterally in the stratum corneum extracellular lipid matrix. In this study, the overall tendency for lipid domain formation in different mixtures of extracted human stratum corneum ceramides, cholesterol, free fatty acids, cholesterol sulfate and cholesteryl oleate were studied using atomic force microscopy (AFM) on Langmuir-Blodgett (LB) films on mica. It is shown that the saturated long-chain free fatty acid distribution of human stratum corneum prevents hydrocarbon chain segregation. Further, LB-films of human stratum corneum ceramides express a pattern of connected elongated domains with a granular domain interface. The dominating effect of both cholesterol and cholesterol sulfate is that of increased ceramide domain dispersion. This effect is counteracted by the presence of free fatty acids, which preferentially mix with ceramides and not with cholesterol. Cholesteryl oleate does not mix with other skin lipid components, supporting the hypothesis of an extra-endogenous origin. In the system composed of endogenous human ceramides and cholesterol plus 15 wt% stratum corneum distributed free fatty acids, i.e., the system mimicking most closely the lipid composition of the stratum corneum extracellular space, LB-films on mica express lateral domain formation.  相似文献   

4.
Ceramides are vital components of the water barrier in mammalian skin. Epidermis-specific, a major ceramide portion contains omega-hydroxy very long chain fatty acids (C30-C36). These omega-hydroxy ceramides (Cers) are found in the extracellular lamellae of the stratum corneum either as linoleic acyl esters or protein bound. Glucosylceramide is the major glycosphingolipid of the epidermis. Synthesized from ceramide and UDP-glucose, it is thought to be itself an intracellular precursor and carrier for extracellular omega-hydroxy ceramides. To investigate whether GlcCer is an obligatory intermediate in ceramide metabolism to maintain epidermal barrier function, a mouse with an epidermis-specific glucosylceramide synthase (Ugcg) deficiency has been generated. Four days after birth animals devoid of GlcCer synthesis in keratinocytes showed a pronounced desquamation of the stratum corneum and extreme transepidermal water loss leading to death. The stratum corneum appeared as a thick unstructured mass. Lamellar bodies of the stratum granulosum did not display the usual ordered inner structure and were often irregularly arranged. Although the total amount of epidermal protein-bound ceramides remained unchanged, epidermal-free omega-hydroxy ceramides increased 4-fold and omega-hydroxy sphingomyelins, almost not detectable in wild type epidermis, emerged in quantities comparable with lost GlcCer. We conclude that the transient formation of GlcCer is vital for a regular arrangement of lipids and proteins in lamellar bodies and for the maintenance of the epidermal barrier.  相似文献   

5.
The permeability barrier is required for terrestrial life and is localized to the stratum corneum, where extracellular lipid membranes inhibit water movement. The lipids that constitute the extracellular matrix have a unique composition and are 50% ceramides, 25% cholesterol, and 15% free fatty acids. Essential fatty acid deficiency results in abnormalities in stratum corneum structure function. The lipids are delivered to the extracellular space by the secretion of lamellar bodies, which contain phospholipids, glucosylceramides, sphingomyelin, cholesterol, and enzymes. In the extracellular space, the lamellar body lipids are metabolized by enzymes to the lipids that form the lamellar membranes. The lipids contained in the lamellar bodies are derived from both epidermal lipid synthesis and extracutaneous sources. Inhibition of cholesterol, fatty acid, ceramide, or glucosylceramide synthesis adversely affects lamellar body formation, thereby impairing barrier homeostasis. Studies have further shown that the elongation and desaturation of fatty acids is also required for barrier homeostasis. The mechanisms that mediate the uptake of extracutaneous lipids by the epidermis are unknown, but keratinocytes express LDL and scavenger receptor class B type 1, fatty acid transport proteins, and CD36. Topical application of physiologic lipids can improve permeability barrier homeostasis and has been useful in the treatment of cutaneous disorders.  相似文献   

6.
The epidermal permeability barrier is maintained by extracellular lipid membranes within the interstices of the stratum corneum. Ceramides, the major components of these multilayered membranes, derive in large part from hydrolysis of glucosylceramides mediated by stratum corneum beta-glucocerebrosidase (beta-GlcCerase). Prosaposin (pSAP) is a large precursor protein that is proteolytically cleaved to form four distinct sphingolipid activator proteins, which stimulate enzymatic hydrolysis of sphingolipids, including glucosylceramide. Recently, pSAP has been eliminated in a mouse model using targeted deletion and homologous recombination. In addition to the extracutaneous findings noted previously, our present data indicate that pSAP deficiency in the epidermis has significant consequences including: 1) an accumulation of epidermal glucosylceramides together with below normal levels of ceramides; 2) alterations in lipids that are bound by ester linkages to proteins of the cornified cell envelope; 3) a thickened stratum lucidum with evidence of scaling; and 4) a striking abnormality in lamellar membrane maturation within the interstices of the stratum corneum. Together, these results demonstrate that the production of pSAP, and presumably mature sphingolipid activator protein generation, is required for normal epidermal barrier formation and function. Moreover, detection of significant amounts of covalently bound omega-OH-GlcCer in pSAP-deficient epidermis suggests that deglucosylation to omega-OH-Cer is not a requisite step prior to covalent attachment of lipid to cornified envelope proteins.  相似文献   

7.
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias.  相似文献   

8.
The superficial layer of the skin, the stratum corneum, is the main barrier for diffusion of substances across the skin. The stratum corneum is composed of corneocytes embedded in lipid lamellae. In previous studies two lamellar phases have been identified with periodicities of 6.4 and 13.4 nm of which the 13.4 nm phase (long periodicity phase = LPP) is considered to be very important for the skin banier function. The main lipid classes in stratumcorneum are ceramides, free fatty acids and cholesterol. Until now 8 subclassesof ceramides are identified in human stratum corneum referred to as ceramide 1 to 8. Studies with mixtures prepared with isolated human ceramides revealed that cholesterol and ceramides are very important for the formation of the lamellar phases. After addition of free fatty acids the lipids are organised in an orthorhombic packing with a small proportion of lipids in a liquid phase. Our most recent results show that the presence of ceramide 1 and the formation of a liquid phase are crucial elements for the formation of the LPP. These observations and the broad-narrowbroad sequence of lipid layers in the LPP led us to propose a molecular model for this phase. This consists of one narrow central lipid layer with fluid domains with on both sides a broad layer with a crystalline structure. This model is referred to as `the sandwich model'.  相似文献   

9.
Epidermal differentiation results in the formation of the extracellular lipid barrier in the stratum corneum, which mainly consists of ceramides, free fatty acids, and cholesterol. Differentiating keratinocytes of the stratum granulosum synthesize a series of complex long-chain ceramides and glucosylceramides with different chain lengths and hydroxylation patterns at intracellular membranes of the secretory pathway. Formation of complex extracellular ceramides parallels the transition of keratinocytes from the stratum granulosum to the stratum corneum, where their precursors, complex glucosylceramides and sphingomyelin, are secreted and exposed to extracellular lysosomal lipid hydrolases. Submerged cultures used so far showed a reduced ceramide content compared to the native epidermis or the air-exposed, organotypic culture system. In order to investigate the sphingolipid metabolism during keratinocyte differentiation, we optimized a simple cell culture system to generate the major barrier sphingolipids. This optimized model is based on the chemically well-defined serum-free MCDB medium. At low calcium ion concentrations (0.1mM), keratinocytes proliferate and synthesize mainly Cer(NS) and a small amount of Cer(NP). Supplementation of the MCDB cell culture medium with calcium ions (1.1mM) and 10 microM linoleic acid triggered differentiation of keratinocytes and synthesis of a complex pattern of free and covalently bound ceramides as found in native epidermis or air-exposed organotypic cultures, though at a reduced level. The mRNA levels of the differentiation markers keratin 10 and profilaggrin increased, as well as those of ceramide glucosyltransferase and glucosylceramide-beta-glucosidase. The described culture system was thus suitable for biochemical studies of the sphingolipid metabolism during keratinocyte differentiation. The addition of serum or vitamin A to the medium resulted in a decrease in ceramide and glucosylceramide content. Lowering the medium pH to 6, while maintained cell viability, led to an increase in the processing of probarrier lipids glucosylceramide and sphingomyelin to free ceramides and protein-bound ceramide Cer(OS).  相似文献   

10.
Lipid lamellae present in the outermost layer of the skin, the stratum corneum, form the main barrier for the diffusion of molecules through the skin. The presence of a unique 13 nm lamellar phase and its high crystallinity are characteristic for the stratum corneum lipid phase behavior. In the present study, small-angle and wide-angle X-ray diffraction were used to examine the organization in lipid mixtures prepared with a unique set of well-defined synthetic ceramides, varying from each other in head group architecture and acyl chain length. The results show that equimolar mixtures of cholesterol, free fatty acids, and synthetic ceramides (resembling the composition of pig ceramides) closely resemble the lamellar and lateral stratum corneum lipid organization, both at room and higher temperatures. Exclusion of several ceramide classes from the mixture does not affect the lipid organization. However, complete substitution of ceramide 1 (acylceramide with a sphingosine base) with ceramide 9 (acylceramide with a phytosphingosine base) reduces the formation of the long periodicity lamellar phase. This indicates that the head group architecture of acylceramides affects the lipid organization. In conclusion, lipid mixtures prepared with well-defined synthetic ceramides offer an attractive tool with which to unravel the importance of the molecular structure of individual ceramides for proper lipid organization.  相似文献   

11.
12.
13.
The primary function of the skin is to protect the body for unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid regions. As most drugs applied onto the skin permeate along the lipid domains, the lipid organization is considered to be very important for the skin barrier function. It is for this reason that the lipid organization has been investigated quite extensively. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid organization is different from that of other biological membranes. In stratum corneum, two lamellar phases are present with repeat distances of approximately 6 and 13 nm. Moreover the lipids in the lamellar phases form predominantly crystalline lateral phases, but most probably a subpopulation of lipids forms a liquid phase. Diseased skin is often characterized by a reduced barrier function and an altered lipid composition and organization. In order to understand the aberrant lipid organization in diseased skin, information on the relation between lipid composition and organization is crucial. However, due to its complexity and inter-individual variability, the use of native stratum corneum does not allow detailed systematic studies. To circumvent this problem, mixtures prepared with stratum corneum lipids can be used. In this paper first the lipid organization in stratum corneum of normal and diseased skin is described. Then the role the various lipid classes play in stratum corneum lipid organization and barrier function has been discussed. Finally, the information on the role various lipid classes play in lipid phase behavior has been used to interpret the changes in lipid organization and barrier properties of diseased skin.  相似文献   

14.
The primary function of the skin is to protect the body for unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. The stratum corneum consists of corneocytes surrounded by lipid regions. As most drugs applied onto the skin permeate along the lipid domains, the lipid organization is considered to be very important for the skin barrier function. It is for this reason that the lipid organization has been investigated quite extensively. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid organization is different from that of other biological membranes. In stratum corneum, two lamellar phases are present with repeat distances of approximately 6 and 13 nm. Moreover the lipids in the lamellar phases form predominantly crystalline lateral phases, but most probably a subpopulation of lipids forms a liquid phase. Diseased skin is often characterized by a reduced barrier function and an altered lipid composition and organization. In order to understand the aberrant lipid organization in diseased skin, information on the relation between lipid composition and organization is crucial. However, due to its complexity and inter-individual variability, the use of native stratum corneum does not allow detailed systematic studies. To circumvent this problem, mixtures prepared with stratum corneum lipids can be used. In this paper first the lipid organization in stratum corneum of normal and diseased skin is described. Then the role the various lipid classes play in stratum corneum lipid organization and barrier function has been discussed. Finally, the information on the role various lipid classes play in lipid phase behavior has been used to interpret the changes in lipid organization and barrier properties of diseased skin.  相似文献   

15.
The main function of the skin is to protect the body against exogenous substances. The skin barrier is located in the outermost layer of the skin, the stratum corneum (SC). This layer consists of keratin enriched cells embedded in lipid lamellae that form the main barrier for diffusion of substances through the skin. The main lipid classes in this barrier are ceramides, cholesterol and free fatty acids. Cholesterol sulfate and calcium are also present in SC. Furthermore it has been suggested that a pH gradient exists. In a previous paper the effect of cholesterol sulfate and calcium on the lipid phase behaviour of mixtures prepared from cholesterol, ceramides and free fatty acids at pH 5 was reported (approximate pH at the skin surface). In the present study the phase behaviour of mixtures prepared from cholesterol, ceramides and free fatty acids prepared at pH 7.4 (the pH of viable cells) has been examined between 25 and 95 degrees C. Our studies reveal that a reversed hexagonal phase has been formed at elevated temperatures. Addition of calcium inhibits the formation of the reversed hexagonal phase, while cholesterol sulfate promotes the presence of the reversed hexagonal phase at increased temperatures. From our results we can conclude that the lipid mixtures prepared at pH 5 resemble more closely the lipid phase behaviour in intact SC than the lipid mixtures prepared at pH 7.4.  相似文献   

16.
The natural function of the skin is to protect the body from unwanted influences from the environment. The main barrier of the skin is located in the outermost layer of the skin, the stratum corneum. Since the lipids regions in the stratum corneum form the only continuous structure, substances applied onto the skin always have to pass these regions. For this reason the organization in the lipid domains is considered to be very important for the skin barrier function. Due to the exceptional stratum corneum lipid composition, with long chain ceramides, free fatty acids and cholesterol as main lipid classes, the lipid phase behavior is different from that of other biological membranes. In stratum corneum crystalline phases are predominantly present, but most probably a subpopulation of lipids forms a liquid phase. Both the crystalline nature and the presence of a 13 nm lamellar phase are considered to be crucial for the skin barrier function. Since it is impossible to selectively extract individual lipid classes from the stratum corneum, the lipid organization has been studied in vitro using isolated lipid mixtures. These studies revealed that mixtures prepared with isolated stratum corneum lipids mimic to a high extent stratum corneum lipid phase behavior. This indicates that proteins do not play an important role in the stratum corneum lipid phase behavior. Furthermore, it was noticed that mixtures prepared only with ceramides and cholesterol already form the 13 nm lamellar phase. In the presence of free fatty acids the lattice density of the structure increases. In stratum corneum the ceramide fraction consists of various ceramide subclasses and the formation of the 13 nm lamellar phase is also affected by the ceramide composition. Particularly the presence of ceramide 1 is crucial. Based on these findings a molecular model has recently been proposed for the organization of the 13 nm lamellar phase, referred to as "the sandwich model", in which crystalline and liquid domains coexist. The major problem for topical drug delivery is the low diffusion rate of drugs across the stratum corneum. Therefore, several methods have been assessed to increase the permeation rate of drugs temporarily and locally. One of the approaches is the application of drugs in formulations containing vesicles. In order to unravel the mechanisms involved in increasing the drug transport across the skin, information on the effect of vesicles on drug permeation rate, the permeation pathway and perturbations of the skin ultrastructure is of importance. In the second part of this paper the possible interactions between vesicles and skin are described, focusing on differences between the effects of gel-state vesicles, liquid-state vesicles and elastic vesicles.  相似文献   

17.
Deuterium NMR investigation of polymorphism in stratum corneum lipids   总被引:3,自引:0,他引:3  
The intercellular lipid lamellae of stratum corneum constitute the major barrier to percutaneous penetration. Deuterium magnetic resonance and freeze-fracture electron microscopic investigation of hydrated lipid mixtures consisting of ceramides, cholesterol, palmitic acid and cholesteryl sulfate and approximating the stratum corneum intercellular lipid composition, revealed thermally induced polymorphism. The transition temperature of bilayer to hexagonal transition decreased as the ratio of cholesterol to ceramides in these mixtures was lowered. Lipid mixtures in which the stratum corneum ceramides were replaced by synthetic dipalmitoylphosphatidylcholine did not show any polymorphism throughout the temperature range used in the present study. The ability of the ceramide-containing samples to form hexagonal structures establishes a plausible mechanism for the assembly of the stratum corneum intercellular lamellae during the final stages of epidermal differentiation. Also, the bilayer to hexagonal phase transition of these nonpolar lipid mixtures could be used to enhance the penetration of drugs through skin.  相似文献   

18.
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while alpha-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified omega-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 degrees C) than human skin (74 degrees C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.  相似文献   

19.
The cornified lipid envelope (CLE) is a lipid monolayer covalently bound to the outside of corneocytes and is part of the stratum corneum (SC). The CLE is suggested to act as a scaffold for the unbound SC lipids. By profiling the bound CLE ceramides, a new subclass was discovered and identified as an omega-hydroxylated dihydrosphingosine (OdS) ceramide. Bound glucosylceramides were observed in superficial SC layers of healthy human skin. To investigate the relation between bound and unbound SC ceramides, the composition of both fractions was analyzed and compared. Selectivity in ceramide binding towards unsaturated ceramides and ceramides with a shorter chain length was observed. The selectivity in ceramide species bound to the cornified envelope is thought to have a physiological function in corneocyte flexibility. Next, it was examined if skin models exhibit an altered bound ceramide composition and if the composition was dependent on liver X-receptor (LXR) activation. The effects of an LXR agonist and antagonist on the bound ceramides composition of a full thickness model (FTM) were analyzed. In FTMs, a decreased amount of bound ceramides was observed compared to native human skin. Furthermore, FTMs had a bound ceramide fraction which consisted mostly of unsaturated and shorter ceramides. The LXR antagonist had a normalizing effect on the FTM bound ceramide composition. The agonist exhibited minimal effects. We show that ceramide binding is a selective process, yet, still is contingent on lipid synthesized.  相似文献   

20.
The epidermal sphingolipids from rats maintained on either a rat stock diet or a fat-free diet have been analyzed. Thin-layer chromatographic analyses have revealed glucosylceramides, acylglucosylceramides and four fractions of ceramides, one of which proved to be an acylceramide. The relative amounts of the glucosylceramides, acylglucosylceramides and acylceramides were increased in the essential fatty acid-deficient epidermis while one ceramide fraction was diminished. The other two ceramide fractions remained unchanged. The acylceramides and acylglucosylceramides from normal rat epidermis both contained long-chain omega-hydroxy acids in amide linkage to sphingosine bases and high proportions of linoleic acid in ester linkage. The linoleate, which is known to be crucial for the formation and maintenance of the epidermal water barrier, was replaced by oleate in the essential fatty acid-deficient rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号